20205 QUESTION 3.

(10 marks)

Show that

$$\frac{n}{2} < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n - 1} < n$$
for all integers $n \ge 2$.

$$\frac{n}{2} = \sum_{i=1}^{n-1} \frac{1}{i}$$
Step 1: show that

$$\sum_{i=1}^{n-1} \frac{1}{i} \ge \frac{n}{2}$$
for all integers $n \ge 2$.

$$\frac{n}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{3} = \frac{1}{6}$$
RHS = 1.

$$\frac{1 + \frac{1}{2} + \frac{1}{3}}{1} = \frac{1}{6} + \frac{1}{2} + \frac{1}{3} = \frac{1}{6}$$
RHS = 1.

$$\frac{1 + \frac{1}{2} + \frac{1}{3}}{1} = \frac{1}{6} + \frac{1}{2} + \frac{1}{3} = \frac{1}{6}$$
RHS = 1.

$$\frac{1 + \frac{1}{2} + \frac{1}{3}}{1} = \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{1}{16} + \frac{1}{16}$$

Since for all
$$i = 2^{k}$$
, $2^{k} + 1$, $2^{k} + 2$, ..., $2^{k+1} - 1$,
 $\frac{1}{k} > \frac{1}{2^{k+1}}$, $\frac{1}{k} - \frac{1}{2} > (\sum_{i=2^{k}}^{2^{k+1}-1} \frac{1}{2}) - \frac{1}{2} = \frac{2^{k}}{2^{k+1}} - \frac{1}{2} = 0$.
Hence, $LHS > RHS$ and the inequality holds for $n = kt1$.
Therefore, by mothematical induction, $\sum_{i=1}^{2^{k}-1} \frac{1}{i} > \frac{n}{2}$ for all integers
 $n \ge 2$.
Step 2: show that $\sum_{i=1}^{2^{k}-1} \frac{1}{i} < n$ for all integers $n \ge 2$.
Base step: when $n = 2$, $LHS = \sum_{i=1}^{2^{k}-1} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$
 $RHS = 2$.
LHS < RHS. Hence, the inequality holds when $n = k$ ($k \ge 2$),
 $i.e. \sum_{i=1}^{2^{k}-1} \frac{1}{i} < k$. When $n = kt1$,
 $LHS - RHS = \sum_{i=1}^{2^{k}-1} \frac{1}{i} - (kt1) = (\sum_{i=1}^{2^{k}-1} \frac{1}{i}) - (k+1)$
 $k + (\sum_{i=1}^{2^{k}-1} \frac{1}{i}) - (k+1)$
 $k + (\sum_{i=1}^{2^{k}-1} \frac{1}{i}) - (k+1)$

Again, let's take a look at what this term is when k=3.

$$\sum_{i=1}^{m-1} \frac{1}{i} = \frac{1}{i} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{5} + \frac{1}{7} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{15} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1$$