Week ⁹

Q15: This exercise is more difficult. For all sets A and B, prove $(A \cup B) \cap \overline{A \cap B} = (A - B) \cup$ $(B - A)$ by showing that each side of the equation is a subset of the other.

We conclude that $LHS = RHS$.

- Q16: The symmetric difference of A and B, denoted by $A\Delta B$, is the set containing those elements in either A or B , but not in both A and B .
	- 1. Prove that $(A\triangle B)\triangle B = A$ by showing that each side of the equation is a subset of the other.

Notice that
$$
A \triangle B = (A \cup B) \cap A \cap B = (A-B) \cup (B-A)
$$

\nProof that LHS \subseteq RHS: let $x \in LHS$ be arbitrary. Then,
\n $\times \in (A \triangle B) \triangle B = ((A \triangle B) - B) \cup (B - (A \triangle B))$.
\nCase 1: $X \in (A \triangle B) - B$. Then, $x \in A \triangle B \subseteq A \cup B$ and $x \notin B$.
\nHence, we get $x \in A$.
\nCase 2: $X \in B - (A \triangle B)$. We will try to simplify B-(A \triangle B) :
\n $B - (A \triangle B) = B \cap \overline{A \triangle B}$ (alt. rep. of "-")
\n $= B \cap \overline{A \cap B} \cap \overline{B \cap A}$ (be Morgan)
\n $= B \cap \overline{A \cap B} \cap \overline{B \cap A}$ (alt. rep. of "-")
\n $= [B \cap (\overline{A} \cup B)] \cap (\overline{B} \cup A)$ (De Morgan)
\n $= B \cap (\overline{B} \cup A)$ (absorption)
\n $= [B \cap \overline{B}) \cup (B \cap A)$ (distribution)
\n $= \varphi \cup (B \cap A)$

Since $B - (A \triangle B) = B \cap A$, we get $x \in B \cap A$. Hence, $x \in A$. In both cases, $x \in A$ holds. Therefore, LHS \subseteq RHS.

 $\mathsf{Proof}\>$ that $\>$ RHS \subseteq LHS : (et $\times\in$ RHS = A be arbitrary. Then, either $x \in B$ or $x \notin B$.

 $Case 1: x \in B$. Then, $x \in A \cap B = B - (A \triangle B) \subseteq LHS$. Thus, $x \in L$ HS.

 $Case 2: x4B$. Then, $x \in A-B \subseteq AAB$. Since $x \in AAB$

and \times & B , we get $\times\in$ (AAB)- B \subseteq LHS and thus $\times\in$ LHS In both cases, $x \in LHS$ holds. Therefore, RHS $\subseteq LHS$.

We conclude that LHS = RHS.

- Q16: The symmetric difference of A and B, denoted by $A\Delta B$, is the set containing those elements in either A or B , but not in both A and B .
	- 2. Prove that $(A \triangle B) \triangle B = A$ using a membership table.

Inverse : VxEA. VyEB, xRy ← yRx From a set perspective : $R^{-l} \subseteq B \times A$, $\forall x \in A$, $\forall y \in B$, $(x, y) \in R \leftrightarrow (y, x) \in R^{-1}$. $e.g. R = \{(1, 4), (1, 5), (2, 6), (3, 7)\}$ R^{-1} $= \{(4,1), (5,1), (6,2), (7,3) \}$

From a matrix perspective : the matrix corresponding to R^{-1} is the <u>transpose</u> of the matrix corresponding to ^R . e.g. ⁴ ⁵ ⁶ 7 ^I ² ³ / T T F $R: \begin{array}{c} \begin{array}{c} \text{ } \\ \end{array} & \begin{array}{c} \text{ } \\ \text{ } \end{array} & \begin{array}{c} \text{ } \\ \end{array} & \begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \end{array} & \begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \\ \text{ } \\ \end{array} & \begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \\ \end{array}$ R^{-1} :|: : :| . 3 F F F T ⁶ F T F

From ^a graph perspective : reversing the direction of all edges in the graph corresponding to R results in the graph corresponding to R " . e.g. A B A B A B A B
 \circ \rightarrow 4 \circ \circ \bullet \bullet $R : \begin{array}{ccccccc} & A & B & A & B \\ \hline \end{array}$ R -1 : ^③→^⑥ ^③ ^⑥ R^{-1}
 \odot R^{-1}
 \odot \odot

Q2: Consider the sets $A = \{2,3,4\}$, $B = \{2,6,8\}$ and the relation $(x,y) \in R \Leftrightarrow x|y$. Compute the matrix of the inverse relation R^{-1} .

Composition : R is ^a relation from ^A to ^B , S is a relation from B to C. SOR is a relation from A to C. b- ✗ c- ^A , V-z.EC , ✗ (⁵⁰¹²)z ← 7- YEB , ✗ Ry A ysz . From ^a set perspective : $S \cdot R = \{ (x,z) \in A \times C : \exists y \in B, (x,y) \in R, (y,z) \in S \}.$

From a graph perspective : For every pair $(x, z) \in A \times C$, $x(S \cdot R)z$ if and only if there is ^a path from ✗ to 2- (through an element in B) e.g. A B C ⑨ a path from \times to \ge
A B C
(a)
(a)
 \Rightarrow (b)
(c)
(c) \neg c_i is reachable from $a_i \implies a_i$ (S.R) $c_i \equiv T$ c_1 is reachable from $a_1 \implies a_1$ (S.R) $c_2 \equiv T$ S_3 is NOT reachable from $a_2 \Rightarrow a_2(S \circ R) C_3 \equiv F$

Composition from ^a matrix perspective :

Q4: This exercise is about composing relations.

1. Consider the sets $A = \{a_1, a_2\}, B = \{b_1, b_2\}, C = \{c_1, c_2, c_3\}$ with the following relations R from A to B , and S from B to C :

$$
R = \{(a_1, b_1), (a_1, b_2)\}, \qquad S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}.
$$

What is the matrix of $S \circ R$?

- bi bz

The matrix of R: $M_R = a_1 T T$ a_2 F F

The matrix of S:
$$
M_S = b_1 \begin{bmatrix} c_1 & c_2 & c_3 \\ T & F & T \\ b_2 & T & T & F \end{bmatrix}
$$

The matrix of $S \circ R$ is the matrix product of MR and M_S , where \cdot p+q (addition) is replaced by $p\vee q$ (disjunction). P . ⁹ (multiplication) is replaced by pxq (conjunction).

$$
M_R \cdot M_S = a_1 \begin{bmatrix} b_1 & b_2 & c_1 & c_2 & c_3 \\ T & T & D & D & T & T \\ a_2 & F & F & b_2 & T & T \end{bmatrix}
$$

$$
C_{1} C_{2} C_{3}
$$
\n
$$
= G_{1} \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ (T_{\Lambda}T) \vee (T_{\Lambda}T) & (T_{\Lambda}F) \vee (T_{\Lambda}T) & (T_{\Lambda}T) \vee (T_{\Lambda}F) \\ G_{2} (F_{\Lambda}T) \vee (F_{\Lambda}T) & (F_{\Lambda}F) \vee (F_{\Lambda}T) & (F_{\Lambda}T) \vee (F_{\Lambda}F) \end{bmatrix}
$$
\n
$$
= G_{1} \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ T & T & T \\ F & F & F \end{bmatrix}
$$

Note that f_{pr} two real matrices M_1 and M_2 :

$$
M_{1} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}, M_{2} = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \end{bmatrix},
$$

$$
M_{1} \cdot M_{2} = \begin{bmatrix} P_{11}P_{11} + P_{12}P_{21} & P_{11}P_{12} + P_{12}P_{22} & P_{11}P_{13} + P_{12}P_{23} \\ P_{21}P_{11} + P_{22}P_{21} & P_{21}P_{12} + P_{22}P_{22} & P_{21}P_{13} + P_{22}P_{23} \end{bmatrix}
$$

In general, the entry of
$$
M_1 \cdot M_2
$$
 on the i-th row and
j-th column is equal to $\left(\sum_{k=1,2} P_{ik} Q_{kj}\right)$.

Try to compare the product of real matrices and the product $+$ boolean matrices and convince yourself that the matrix of ^a composite relation is the product of the matrices of the individual relations.

(Will be discussed next week)

From now on , we consider relations from ^a set A to itself .

Reflexivity : R is reflexive \Leftrightarrow $\forall x \in A$, $x R x$. (unconditional) Symmetry: R is symmetric < VxEA, VyEA, xRy → yRx. <u>Antisymmetry: R is antisymmetric &> ∀xEA, YyEA, xRynyRx→×=y</u> T<u>ransitivity</u> : R is tr**ansitive ⇔ ∀xeA.∀yeA.VzeA.**xRynyRz →xRz.

From ^a set perspective : Reflexivity: $\forall x \in A$, $(x \cdot x) \in R$. Symmetry : VxEA, VyEA, (x,y)ER <> (y,x)ER $\equiv \forall x \in A$, $\forall y \in A$. $((x,y) \in R \land (y,x) \in R)$ v $((x,y) \notin R \land (y,x) \notin R)$. both are included neither is included Antisymmetry : →XEA, YyEA, (x≠y) → ㄱ((x,y)ER へ (y,x)ER) $\equiv \forall x \in A$, $\forall y \in A$, $(x * y) \rightarrow (x, y) \notin R$ \vee $(y, x) \notin R$ at most one can be included Transitivity : VxEA, VyEA, VzEA, (x.y)ER 1 (y,z)ER→(x,z)ER (not very insightful...)

Anti symmetry : entries above the diagonal and their " mirror reflections " below the diagonal cannot both be TRUE (can be TRUE - FALSE , FALSE–TRUE, or FALSE-FALSE), <mark>diagonal</mark> entries can be TRUE or FALSE I don't matter) . a_1 a_2 a_3 a_4 e.g. a, $\overline{a_1}$ a, $\overline{a_2}$ $\overline{a_3}$ $\overline{a_4}$ $\overline{0}$ $\overline{0}$ & $\overline{0}$ & a_z \bigcirc \neq \bigcirc \bigcirc [|] ^④- ④ are allowed as ^⑦ ^⑦ TO-0T is NOT allowed a_4 \oplus \oplus \oplus \oplus \oplus \oplus Transitivity : not very insightful using the matrix perspective .

From a graph perspective : Reflexivity : Every element has a self-loop e.g. $0-22$ $\frac{1}{4}$ \bigotimes Symmetry : every edge is bidirectional unless it is ^a self - loop . $e.9$. age is bidired 94 edge is bidin
(1) Antisymmetry : there is NO bidirectional edge . e. g. (①
→③
② \downarrow (3) ① Transitivity : not very insightful using the graph perspective .