Numerical method for approximately optimal solutions of two-stage distributionally robust optimization with marginal constraints

Qikun Xiang

Nanyang Technological University, Singapore

June 30, 2022

Joint work with:

Ariel Neufeld, Nanyang Technological University, Singapore

[Introduction](#page-1-0)

Two-stage distributionally robust optimization (DRO)

Two-stage distributionally robust optimization (DRO) problem:

 $\phi_{\text{DRO}} := \min_{\mathbf{a}} \text{imimize} \quad \langle \mathbf{c}_1, \mathbf{a} \rangle + \sup_{\mu \in \mathcal{P}_{\mathbf{X}}}$ Z $\frac{d}{dx} Q(\boldsymbol{a}, \boldsymbol{x}) \mu(\mathrm{d}\boldsymbol{x})$ $\text{subject to} \quad \mathsf{L}_{\text{in}} \boldsymbol{a} \leq \boldsymbol{q}_{\text{in}}, \ \mathsf{L}_{\text{eq}} \boldsymbol{a} = \boldsymbol{q}_{\text{eq}}, \ \boldsymbol{a} \in \mathbb{R}^{K_{1}}.$

- First-stage decision variable $\boldsymbol{a} \in \mathbb{R}^{K_1}$.
- Uncertain quantity $\bm{x}\in\mathcal{X}:=\mathcal{X}_1\times\dots\times\mathcal{X}_N\subset\mathbb{R}^N,$ where $\mathcal{X}_1,\dots,\mathcal{X}_N$ are compact subsets of R.
- $\mathbf{P}_{\mathbf{X}} \subseteq \mathcal{P}(\mathbf{X})$ is the ambiguity set of probability measures.
- $\langle c_1, a \rangle$ is the first-stage cost, $Q(a, x)$ is the second-stage cost: $Q(\mathbf{a}, \mathbf{x}) :=$ minimize $\langle \mathbf{c}_2, \mathbf{z} \rangle$ *z* subject to $\mathbf{A}_{in} \mathbf{z} < \mathbf{V}_{in} \mathbf{a} + \mathbf{W}_{in} \mathbf{x} + \mathbf{b}_{in}$ $A_{eq}z = V_{eq}a + W_{eq}x + b_{eq}$ $z \in \mathbb{R}^{K_2}$.

[Introduction](#page-1-0)

Two-stage distributionally robust optimization (DRO)

• We consider the case where $\mathcal{P}_{\mathcal{X}}$ is the set of couplings of fixed marginals $\mu_1 \in \mathcal{P}(\mathcal{X}_1), \ldots, \mu_N \in \mathcal{P}(\mathcal{X}_N)$:

$$
\mathcal{P}_{\boldsymbol{\mathcal{X}}} = \boldsymbol{\mathsf{\Gamma}}(\mu_1,\ldots,\mu_N) := \Big\{ \mu \in \mathcal{P}(\boldsymbol{\mathcal{X}}) :
$$

the marginal of μ on \mathcal{X}_i is μ_i \forall 1 \leq i \leq N $\}$.

Motivation: there is much less ambiguity about the marginal distributions than the dependence structure (Eckstein, Kupper, and Pohl 2020).

[Introduction](#page-1-0)

Example: supply chain network design

- **a**: investment for the processing facilities
- **x** : demands of product & failure of edges
- $\bullet \langle c_1, a \rangle$: investment cost
- *Q*(*a*, *x*) : transportation & processing costs

Additional examples include: task scheduling, assemble-to-order system, \bullet

...

Contributions

- We develop a relaxation scheme for two-stage DRO with marginal constraints such that the relaxation error can be controlled to be arbitrarily close to 0.
- We develop a numerical algorithm which computes:
	- an **approximately optimal solution** $\hat{\mathbf{a}}$ of ϕ_{DRO} ;
	- **upper bound** $\phi_{\text{DRO}}^{\text{UB}}$ and **lower bound** $\phi_{\text{DRO}}^{\text{LB}}$ such that $\phi_{\text{DRO}}^{\text{LB}} \leq \phi_{\text{DRO}} \leq \phi_{\text{DRO}}^{\text{UB}}$
	- $\hat{\epsilon} := \phi_{\text{DRO}}^{\text{UB}} \phi_{\text{DRO}}^{\text{LB}}$ measuring the sub-optimality of $\hat{\mathbf{a}}$, where $\hat{\epsilon}$ can be controlled to be arbitrarily close to 0 by the inputs of the algorithm.
- We perform numerical experiments to demonstrate the proposed algorithm in prominent decision problems including scheduling, assemble-to-order system, and supply chain network design.

[Related studies](#page-5-0)

Related studies

- Gao and Kleywegt (2017) consider DRO with marginal constraints & Wasserstein distance based constraint.
	- Computation is only tractable when the marginals are discrete and when the second-stage cost is the maximum of finitely many affine functions.
- Chen, Ma, Natarajan, Simchi-Levi, and Yan (2021) deal with a particular class of DRO problem with marginal constraints, most notably appointment scheduling.
	- Focuses on analysing the theoretical computational complexity.
	- No concrete numerical algorithm is provided.
- **Connection with multi-marginal optimal transport (MMOT)**: Carlier, Oberman, Oudet (2015), Pass (2015), Benamou, Carlier, and Nenna (2019), Peyré and Cuturi (2019), Benamou (2021), Neufeld and Xiang (2022), . . .

Step 1: Augmentation

• Recall that the two-stage DRO problem

$$
\phi_{\text{DRO}} := \underset{\mathbf{a}}{\text{minimize}} \quad \langle \mathbf{c}_1, \mathbf{a} \rangle + \underset{\mu \in \mathcal{P}_{\mathbf{x}}}{\text{sup}} \int_{\mathbf{x}} Q(\mathbf{a}, \mathbf{x}) \, \mu(\mathrm{d}\mathbf{x})
$$
\n
$$
\text{subject to} \quad \mathbf{L}_{\text{in}} \mathbf{a} \leq \mathbf{q}_{\text{in}}, \ \mathbf{L}_{\text{eq}} \mathbf{a} = \mathbf{q}_{\text{eq}}, \ \mathbf{a} \in \mathbb{R}^{K_1}
$$

has a min-max-min structure.

To begin, take the dual of the second-stage problem and represent $Q(\mathbf{a}, \mathbf{x}) = \max_{\lambda \in S_2^*} \{ \langle \mathbf{Va} + \mathbf{Wx} + \mathbf{b}, \lambda \rangle \}$ for some polytope $S_2^* \subset \mathbb{R}^{K_2^*}$. This transforms the problem into a min-max-max problem.

Step 1: Augmentation

• Next, to combine the two maximization steps, we augment $Q(\cdot, \cdot)$ and $\Gamma(u_1, \ldots, u_N)$:

 $Q_{\text{aug}}(\mathbf{a}, \mathbf{x}, \lambda) := \langle \mathbf{Va} + \mathbf{W}\mathbf{x} + \mathbf{b}, \lambda \rangle \quad \forall \mathbf{a}, \forall \mathbf{x}, \forall \lambda,$ $\mathsf{\Gamma}_{\mathrm{aug}}(\mu_1,\ldots,\mu_N) := \Big\{ \mu_{\mathrm{aug}} \in \mathcal{P}(\mathcal{X} \times \mathcal{S}_2^*) : \Big\}$

the marginal of μ_aug on \mathcal{X}_i is $\mu_i \ \forall 1 \leq i \leq \mathcal{N}$.

Lemma (Augmentation)

The following equality holds:

$$
\phi_{\text{DRO}} = \underset{\mathbf{a}}{\text{minimize}} \quad \langle \mathbf{c}_1, \mathbf{a} \rangle + \underset{\mu_{\text{aug}} \in \Gamma_{\text{aug}}(\mu_1, ..., \mu_N)}{\sup} \int_{\mathcal{X} \times S_2^*} Q_{\text{aug}}(\mathbf{a}, \mathbf{x}, \lambda) \, \mu_{\text{aug}}(\mathrm{d}\mathbf{x}, \mathrm{d}\lambda)
$$
\n
$$
\text{subject to} \quad \mathbf{L}_{\text{in}} \mathbf{a} \leq \mathbf{q}_{\text{in}}, \ \mathbf{L}_{\text{eq}} \mathbf{a} = \mathbf{q}_{\text{eq}}, \ \mathbf{a} \in \mathbb{R}^{K_1}.
$$

Step 2: Relaxation

- Relax the marginal constraints into finitely many linear constraints.
	- Fixing a marginal can be seen as having infinitely many linear constraints.
- Augmented couplings are replaced by a *moment set*:

Definition (Moment set (Neufeld and X. 2022))

For $i=1,\ldots,N,$ $[\mu_i]_{\mathcal{G}_i}$ is called a moment set centered at μ_i characterized by f unctions $\mathcal{G}_i \subset \mathcal{L}^1(\mathcal{X}_i, \mu_i): \quad \nu_i \in [\mu_i]_{\mathcal{G}_i} \quad \Leftrightarrow \quad \int_{\mathcal{X}_i} \bm{g}_i \, \mathrm{d} \mu_i = \int_{\mathcal{X}_i} \bm{g}_i \, \mathrm{d} \nu_i \; \forall \bm{g}_i \in \mathcal{G}_i.$ Moreover,

$$
\Gamma_{\text{aug}}([\mu_1]_{\mathcal{G}_1}, \ldots, [\mu_N]_{\mathcal{G}_N}) := \left\{ \mu_{\text{aug}} \in \Gamma_{\text{aug}}(\nu_1, \ldots, \nu_N) : \nu_i \in [\mu_i]_{\mathcal{G}_i} \ \forall 1 \leq i \leq N \right\}.
$$

• Relaxed two-stage DRO problem:

minimize $\langle c_1, a \rangle + \sup_{u \to c \in \text{Im}(u_1],$ $\mu_{\mathrm{aug}}\epsilon \mathsf{\Gamma}_{\mathrm{aug}}([\mu_1]_{\mathcal{G}_1},...,[\mu_N]_{\mathcal{G}_N})$ Z $x \times S^*_2$ $Q_{\text{aug}}(\boldsymbol{a}, \boldsymbol{x}, \boldsymbol{\lambda}) \mu_{\text{aug}}(\mathrm{d}\boldsymbol{x}, \mathrm{d}\boldsymbol{\lambda})$ subject to $\mathsf{L}_{\text{in}} \mathsf{a} \leq \mathsf{q}_{\text{in}}$, $\mathsf{L}_{\text{eq}} \mathsf{a} = \mathsf{q}_{\text{eq}}$, $\mathsf{a} \in \mathbb{R}^{\mathsf{K}_{1}}$.

Step 3: Dualization

\n- \n
$$
\text{Let } \mathcal{G}_i = \{g_{i,1}, \ldots, g_{i,m_i}\} \text{ for } i = 1, \ldots, N \text{ and let } m := \sum_{i=1}^N m_i.
$$
\n
\n- \n
$$
\mathbf{g}(x_1, \ldots, x_N) := (g_{1,1}(x_1), \ldots, g_{N,m_N}(x_N))^T \quad \forall (x_1, \ldots, x_N) \in \mathcal{X}.
$$
\n
\n- \n
$$
\mathbf{v} := \left(\int_{\mathcal{X}_1} g_{1,1} \, \mathrm{d} \mu_1, \ldots, \int_{\mathcal{X}_N} g_{N,m_N} \, \mathrm{d} \mu_N\right)^T.
$$
\n
\n

• Replacing the relaxed inner maximization problem by its dual yields the following linear semi-infinite programming (LSIP) problem:

minimize
$$
\langle c_1, a \rangle + y_0 + \langle v, y \rangle
$$

\nsubject to $y_0 + \langle g(x), y \rangle - \langle V^T \lambda, a \rangle \ge \langle Wx + b, \lambda \rangle$
\n $\forall x \in \mathcal{X}, \forall \lambda \in S_2^*,$ (LSIP)
\n $\mathbf{L}_{in} \mathbf{a} \le \mathbf{q}_{in}, \ \mathbf{L}_{eq} \mathbf{a} = \mathbf{q}_{eq},$
\n $\mathbf{a} \in \mathbb{R}^{K_1}, y_0 \in \mathbb{R}, \ \mathbf{y} \in \mathbb{R}^m.$

- Each approximately optimal solution $(\hat{a}, \hat{y}_0, \hat{y})$ of (LSIP) provides:
	- **•** an **approximately optimal solution** \hat{a} of the DRO problem,
	- an **upper bound** $\langle c_1, \hat{a} \rangle + \hat{v}_0 + \langle v, \hat{v} \rangle$ for ϕ_{DRO} (with controlled quality).

[Approximation scheme](#page-6-0)

Step 4: Bounding from below

• The problem (LSIP) admits the following dual:

$$
\begin{array}{ll}\text{maximize} & \langle \boldsymbol{q}_{\text{in}}, \boldsymbol{\xi}_{\text{in}} \rangle + \langle \boldsymbol{q}_{\text{eq}}, \boldsymbol{\xi}_{\text{eq}} \rangle + \int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} \langle \boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}, \boldsymbol{\lambda} \rangle \, \mu_{\text{aug}}(\mathrm{d}\boldsymbol{x}, \mathrm{d}\boldsymbol{\lambda}) \\ \text{subject to} & \boldsymbol{L}_{\text{in}}^{\mathsf{T}} \boldsymbol{\xi}_{\text{in}} + \boldsymbol{L}_{\text{eq}}^{\mathsf{T}} \boldsymbol{\xi}_{\text{eq}} - \boldsymbol{V}^{\mathsf{T}} \big(\int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} \boldsymbol{\lambda} \, \mu_{\text{aug}}(\mathrm{d}\boldsymbol{x}, \mathrm{d}\boldsymbol{\lambda}) \big) = \boldsymbol{c}_{1}, \\ & \boldsymbol{\xi}_{\text{in}} \leq \boldsymbol{0}, \ \mu_{\text{aug}} \in \Gamma_{\text{aug}} \big([\mu_{1}]_{\mathcal{G}_{1}}, \dots, [\mu_{N}]_{\mathcal{G}_{N}} \big), \\ & \boldsymbol{\xi}_{\text{in}} \in \mathbb{R}^{n_{\text{in}}}, \ \boldsymbol{\xi}_{\text{eq}} \in \mathbb{R}^{n_{\text{eq}}}, \ \mu_{\text{aug}} \in \mathcal{P}(\boldsymbol{\mathcal{X}} \times S_{2}^{*}). \end{array} \tag{LSP*}
$$

For each approximately optimal solution $(\hat{\xi}_{\mathrm{in}}, \hat{\xi}_{\mathrm{eq}}, \hat{\mu}_{\mathrm{aug}})$ of (LSIP *):

$$
\begin{aligned} \text{if } \tilde{\mu}_{\text{aug}} \in \Gamma_{\text{aug}}(\mu_1, \dots, \mu_N) \text{ satisfies} \\ \textbf{L}_{\text{in}}^{\text{T}} \hat{\xi}_{\text{in}} + \textbf{L}_{\text{eq}}^{\text{T}} \hat{\xi}_{\text{eq}} - \textbf{V}^{\text{T}} \big(\int_{\boldsymbol{\mathcal{X}} \times S_2^*} \boldsymbol{\lambda} \, \tilde{\mu}_{\text{aug}}(d\boldsymbol{x}, d\boldsymbol{\lambda}) \big) = \textbf{c}_1, \end{aligned}
$$

 θ then $\langle \bm q_{\rm in}, \hat{\bm \xi}_{\rm in}\rangle + \langle \bm q_{\rm eq}, \hat{\bm \xi}_{\rm eq}\rangle + \int_{\bm X\times\mathcal{S}_2^*}\langle \bm W\bm x+\bm b,\lambda\rangle\,\tilde\mu_{\rm aug}({\rm d}\bm x,{\rm d}\lambda)$ is a **lower bound** for ϕ_{DRO} (with controlled quality).

 \bullet

Step 4: Bounding from below

Definition (Partial reassembly)

Let $\bar{\mathcal{X}}_i := \mathcal{X}_i$ for $i = 1, \ldots, \mathsf{N}.$ $\tilde{\mu}_\text{aug}$ is called a partial reassembly of $\hat{\mu}_\text{aug}\in\mathcal{P}(\mathcal{X}_1\times\cdots\times\mathcal{X}_N\times\mathcal{S}_2^*)$ with the marginals μ_1,\ldots,μ_N if there exists a probability measure $\gamma\in\mathcal{P}(\overline{\mathcal{X}}_1\times\cdots\times\mathcal{X}_N\times\bar{\mathcal{X}}_1\times\cdots\times\bar{\mathcal{X}}_N\times\mathcal{S}_2^*)$ such that:

1 the marginal of γ on $\mathcal{X}_1 \times \cdots \times \mathcal{X}_N \times \mathcal{S}_2^*$ is $\hat{\mu}_{{\rm aug}};$

- **2** for $i=1,\ldots,N,$ the marginal $\gamma_i\in\Gamma(\hat\mu_i,\mu_i)$ of γ on $\mathcal X_i\times\bar{\mathcal X}_i$ satisfies $\int_{\mathcal{X}_i\times \bar{\mathcal{X}}_i} |x-y| \, \gamma_i(\mathrm{d} x,\mathrm{d} y)=\mathcal{W}_1(\hat{\mu}_i,\mu_i);$
- **3** the marginal of γ on $\bar{\mathcal{X}}_1 \times \cdots \times \bar{\mathcal{X}}_N \times S^*_2$ is $\tilde{\mu}_{\text{aug}}$.

The set of *partial reassemblies* is denoted by

 $R_{\text{part}}(\hat{\mu}_{\text{aug}}; \mu_1, \ldots, \mu_N) \subset \Gamma_{\text{aug}}(\mu_1, \ldots, \mu_N).$

- **Idea:** morphing $\hat{\mu}_{\text{aug}}$ in an "optimal" way to turn its marginals on $\mathcal{X}_1,\ldots,\mathcal{X}_N$ into μ_1,\ldots,μ_N while leaving its marginal on \mathcal{S}_2^* unchanged.
- One can construct a partial reassembly using Sklar's theorem from copula theory.

Qikun Xiang (NTU, Singapore) [ECSO – CMS Venice](#page-0-0) June 30, 2022 12 / 18

Controlling the approximation error

Theorem (Approximation of two-stage DRO with marginal constraints) *Suppose that:* **1** *for i* = 1, . . . , *N,* G*ⁱ contains only continuous functions;* **2** (\hat{a} , \hat{y}_0 , \hat{y}) *is an* ϵ -optimal solution of (LSIP) for $\epsilon > 0$; ${\bf P}$ $(\hat{\bm{\xi}}_{\rm in},\hat{\bm{\xi}}_{\rm eq},\hat{\mu}_{\rm aug})$ *is an* ϵ^* *-optimal solution of* (LSIP *) *for* $\epsilon^*>0$ *;* \bullet $\tilde{\mu}_{\text{aug}} \in R_{\text{part}}(\hat{\mu}_{\text{aug}}; \mu_1, \ldots, \mu_N);$ **5** $\phi_{\text{DRO}}^{\text{UB}} := \langle c_1, \hat{\bm{a}} \rangle + \hat{y}_0 + \langle \bm{v}, \hat{\bm{y}} \rangle$ $\mathbf{\hat{P}}$ $\phi_{\text{DRO}}^{\text{LB}} := \langle \boldsymbol{q}_{\text{in}}, \hat{\boldsymbol{\xi}}_{\text{in}} \rangle + \langle \boldsymbol{q}_{\text{eq}}, \hat{\boldsymbol{\xi}}_{\text{eq}} \rangle + \int_{\boldsymbol{\mathcal{X}} \times \mathcal{S}^*_2} \langle \boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}, \boldsymbol{\lambda} \rangle \, \tilde{\mu}_{\text{aug}}(\text{d}\boldsymbol{x}, \text{d}\boldsymbol{\lambda}),$ $\bm{\sigma}$ $\tilde{\epsilon} := \epsilon + \epsilon^* + \Big(\sum_{i=1}^N \sup_{\nu_i \in [\mu_i]_{\mathcal{G}_i}} \big\{\textit{W}_1(\mu_i, \nu_i)\big\} \Big) \sup_{\bm{\lambda} \in \mathcal{S}^*_2} \big\{\|\textbf{W}^\mathsf{T} \bm{\lambda}\|_\infty\big\}.$ *Then,* $\phi_{\text{DRO}}^{\text{LB}} \leq \phi_{\text{DRO}} \leq \phi_{\text{DRO}}^{\text{UB}}$ with $\phi_{\text{DRO}}^{\text{UB}} - \phi_{\text{DRO}}^{\text{LB}} \leq \tilde{\epsilon}$; *●* \hat{a} *is an* $\hat{\epsilon}$ *-optimal solution of the two-stage DRO problem, where* $\hat{\epsilon} := \phi_{\text{DRO}}^{\text{UB}} - \phi_{\text{DRO}}^{\text{LB}} \leq \tilde{\epsilon}.$

Practical questions

- **Question 1**: for any $\epsilon > 0$, can we obtain ϵ -optimal solutions of (LSIP) and (LSIP^{*})?
	- **Answer 1**: yes, we develop a suitable cutting-plane algorithm (inspired by Conceptual Algorithm 11.4.1 of Goberna and López (1998)) to obtain ϵ -optimal solutions of (LSIP) and (LSIP^{*}).
- **Question 2**: can we numerically evaluate an integral with respect to a $\tilde{\mu}_{\text{aug}} \in R_{\text{part}}(\hat{\mu}_{\text{aug}}; \mu_1, \ldots, \mu_N)?$
	- **Answer 2**: yes, using the copula theory, we develop an algorithm to explicitly construct a partial reassembly and efficiently generate independent random samples from it.
- **Question 3**: can we control sup $_{\nu_i \in [\mu_i]_{\mathcal{G}_i}} \{W_1(\mu_i, \nu_i)\}$ to be arbitrarily close to 0 for $i = 1, ..., N$?
	- **Answer 3**: yes, for any $\epsilon_i > 0$ we can explicitly construct a finite collection \mathcal{G}_i of continuous piece-wise affine functions with $\sup_{\nu_i\in[\mu_i]_{\mathcal{G}_i}}\left\{\mathsf{W_1}(\mu_i,\nu_i)\right\}\leq\epsilon_i.$

Numerical algorithm

• Putting these pieces together, we develop a numerical algorithm, whose properties are summarized as follows.

Theorem (Properties of the proposed algorithm)

Under suitable conditions, for any $\tilde{\epsilon} > 0$ *, there exists inputs to the proposed* algorithm such that it produces the outputs: $\hat{\textbf{a}}$, $\phi_{\text{DRO}}^{\text{LB}},\ \phi_{\text{DRO}}^{\text{UB}}$ such that

- \mathbf{D} $\phi_{\text{DRO}}^{\text{LB}} \leq \phi_{\text{DRO}} \leq \phi_{\text{DRO}}^{\text{UB}}$
- **2 a** is an $\hat{\epsilon}$ -**optimizer** of the two-stage DRO problem, where $\hat{\epsilon} := \phi_{\text{DRO}}^{\text{UB}} \phi_{\text{DRO}}^{\text{LB}} \leq \tilde{\epsilon}.$
	- **Remark:** the sub-optimality measure $\hat{\epsilon}$ can be computed, and it is often much less conservative than its theoretical upper bound $\tilde{\epsilon}$.

[Numerical algorithm](#page-14-0)

Convergence of the bounds

When appropriately chosen continuous piece-wise affine functions are incrementally added to $(G_i)_{i=1:N}$, the difference between the upper bound $\phi_{{\rm DRO}}^{{\rm UB}}$ and the lower bound $\phi_{{\rm DRO}}^{{\rm LB}}$ goes to 0.

[Numerical example](#page-16-0)

Numerical example: supply chain network design

• Settings:

- We consider 15 suppliers, 20 processing facilities, 10 customers, 150 edges with 25 susceptible to failure. $(N = 10 + 25, K_1 = 170, K_2 = 150)$;
- $\mathcal{X}_1 = \mathcal{X}_2 = \cdots = \mathcal{X}_{10} = [0, 2], \mathcal{X}_{11} = \mathcal{X}_{12} = \cdots = \mathcal{X}_{35} = \{0, 1\}.$
- \bullet μ_1, \ldots, μ_{10} are mixture of truncated normal distributions.
- Parameters in the model are randomly generated.

Result:

The difference between the upper bound and the lower bound is ~ 0.07 .

- **¹** A. Neufeld and Q. Xiang. Numerical method for approximately optimal solutions of two-stage distributionally robust optimization with marginal constraints. Preprint, arXiv:2205.05315, 2022. URL: <https://arxiv.org/abs/2205.05315>
- **²** R. Gao, A. J. Kleywegt. Data-driven robust optimization with known marginal distributions. Working paper, 2017.
- **³** L. Chen, W. Ma, K. Natarajan, D. Simchi-Levi, Z. Yan. Distributionally robust linear and discrete optimization with marginals. *Operations Research*, 2021.
- **4** M. A. Goberna and M. A. López. *Linear semi-infinite optimization*. John Wiley & Sons, 1998.