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Introduction

Two-stage distributionally robust optimization (DRO)
Two-stage distributionally robust optimization (DRO) problem:

ϕDRO := minimize
a

⟨c1,a⟩+ sup
µ∈PX

∫
X

Q(a,x)µ(dx)

subject to Lina ≤ qin, Leqa = qeq, a ∈ RK1 .

First-stage decision variable a ∈ RK1 .

Uncertain quantity x ∈ X := X1 × · · · × XN ⊂ RN , where X1, . . . ,XN are
compact subsets of R.

PX ⊆ P(X ) is the ambiguity set of probability measures.

⟨c1,a⟩ is the first-stage cost, Q(a,x) is the second-stage cost:

Q(a,x) := minimize
z

⟨c2, z⟩

subject to Ainz ≤ Vina + Winx + bin,

Aeqz = Veqa + Weqx + beq,

z ∈ RK2 .
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Introduction

Two-stage distributionally robust optimization (DRO)

We consider the case where PX is the set of couplings of fixed marginals
µ1 ∈ P(X1), . . . , µN ∈ P(XN):

PX = Γ(µ1, . . . , µN) :=
{
µ ∈ P(X ) :

the marginal of µ on Xi is µi ∀1 ≤ i ≤ N
}
.

Motivation: there is much less ambiguity about the marginal distributions
than the dependence structure (Eckstein, Kupper, and Pohl 2020).
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Introduction

Example: supply chain network design

a: investment for the processing facilities

x : demands of product & failure of edges

⟨c1,a⟩: investment cost

Q(a,x) : transportation & processing costs
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Additional examples include: task scheduling, assemble-to-order system,
...
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Introduction

Contributions

We develop a relaxation scheme for two-stage DRO with marginal
constraints such that the relaxation error can be controlled to be
arbitrarily close to 0.

We develop a numerical algorithm which computes:

an approximately optimal solution â of ϕDRO;

upper bound ϕUB
DRO and lower bound ϕLB

DRO such that ϕLB
DRO ≤ ϕDRO ≤ ϕUB

DRO;

ϵ̂ := ϕUB
DRO − ϕLB

DRO measuring the sub-optimality of â, where ϵ̂ can be
controlled to be arbitrarily close to 0 by the inputs of the algorithm.

We perform numerical experiments to demonstrate the proposed
algorithm in prominent decision problems including scheduling,
assemble-to-order system, and supply chain network design.
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Related studies

Related studies

Gao and Kleywegt (2017) consider DRO with marginal constraints &
Wasserstein distance based constraint.

Computation is only tractable when the marginals are discrete and when the
second-stage cost is the maximum of finitely many affine functions.

Chen, Ma, Natarajan, Simchi-Levi, and Yan (2021) deal with a particular
class of DRO problem with marginal constraints, most notably
appointment scheduling.

Focuses on analysing the theoretical computational complexity.
No concrete numerical algorithm is provided.

Connection with multi-marginal optimal transport (MMOT):
Carlier, Oberman, Oudet (2015), Pass (2015), Benamou, Carlier, and
Nenna (2019), Peyré and Cuturi (2019), Benamou (2021),
Neufeld and Xiang (2022), . . .
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Approximation scheme

Step 1: Augmentation

Recall that the two-stage DRO problem

ϕDRO := minimize
a

⟨c1,a⟩+ sup
µ∈PX

∫
X

Q(a,x)µ(dx)

subject to Lina ≤ qin, Leqa = qeq, a ∈ RK1

has a min-max-min structure.

To begin, take the dual of the second-stage problem and represent
Q(a,x) = maxλ∈S∗

2

{
⟨Va + Wx + b,λ⟩

}
for some polytope S∗

2 ⊂ RK∗
2 .

This transforms the problem into a min-max-max problem.
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Approximation scheme

Step 1: Augmentation

Next, to combine the two maximization steps, we augment Q(·, ·) and
Γ(µ1, . . . , µN):

Qaug(a,x ,λ) := ⟨Va + Wx + b,λ⟩ ∀a, ∀x , ∀λ,

Γaug(µ1, . . . , µN) :=
{
µaug ∈ P(X × S∗

2 ) :

the marginal of µaug on Xi is µi ∀1 ≤ i ≤ N
}
.

Lemma (Augmentation)

The following equality holds:

ϕDRO = minimize
a

⟨c1,a⟩+ sup
µaug∈Γaug(µ1,...,µN )

∫
X×S∗

2

Qaug(a,x ,λ)µaug(dx ,dλ)

subject to Lina ≤ qin, Leqa = qeq, a ∈ RK1 .
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Approximation scheme

Step 2: Relaxation
Relax the marginal constraints into finitely many linear constraints.

Fixing a marginal can be seen as having infinitely many linear constraints.

Augmented couplings are replaced by a moment set:

Definition (Moment set (Neufeld and X. 2022))

For i = 1, . . . ,N, [µi ]Gi is called a moment set centered at µi characterized by
functions Gi ⊂ L1(Xi , µi): νi ∈ [µi ]Gi ⇔

∫
Xi

gi dµi =
∫
Xi

gi dνi ∀gi ∈ Gi .
Moreover,

Γaug([µ1]G1 , . . . , [µN ]GN ) :=
{
µaug ∈ Γaug(ν1, . . . , νN) : νi ∈ [µi ]Gi ∀1 ≤ i ≤ N

}
.

Relaxed two-stage DRO problem:

minimize
a

⟨c1,a⟩+ sup
µaug∈Γaug([µ1]G1 ,...,[µN ]GN )

∫
X×S∗

2

Qaug(a,x ,λ)µaug(dx ,dλ)

subject to Lina ≤ qin, Leqa = qeq, a ∈ RK1 .
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Approximation scheme

Step 3: Dualization

Let Gi = {gi,1, . . . ,gi,mi} for i = 1, . . . ,N and let m :=
∑N

i=1 mi .

g(x1, . . . , xN) :=
(
g1,1(x1), . . . , gN,mN (xN)

)T ∀(x1, . . . , xN) ∈ X .

v :=
( ∫

X1
g1,1 dµ1, . . . ,

∫
XN

gN,mN dµN

)T
.

Replacing the relaxed inner maximization problem by its dual yields the
following linear semi-infinite programming (LSIP) problem:

minimize
a,y0,y

⟨c1,a⟩+ y0 + ⟨v ,y⟩

subject to y0 + ⟨g(x),y⟩ − ⟨VTλ,a⟩ ≥ ⟨Wx + b,λ⟩
∀x ∈ X , ∀λ ∈ S∗

2 ,

Lina ≤ qin, Leqa = qeq,

a ∈ RK1 , y0 ∈ R, y ∈ Rm.

(LSIP)

Each approximately optimal solution (â, ŷ0, ŷ) of (LSIP) provides:

an approximately optimal solution â of the DRO problem,

an upper bound ⟨c1, â⟩+ ŷ0 + ⟨v , ŷ⟩ for ϕDRO (with controlled quality).
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Approximation scheme

Step 4: Bounding from below

The problem (LSIP) admits the following dual:

maximize
ξin,ξeq,µaug

⟨qin, ξin⟩+ ⟨qeq, ξeq⟩+
∫
X×S∗

2

⟨Wx + b,λ⟩µaug(dx ,dλ)

subject to LT
inξin + LT

eqξeq − VT( ∫
X×S∗

2
λµaug(dx ,dλ)

)
= c1,

ξin ≤ 0, µaug ∈ Γaug
(
[µ1]G1 , . . . , [µN ]GN

)
,

ξin ∈ Rnin , ξeq ∈ Rneq , µaug ∈ P(X × S∗
2 ).

(LSIP∗)

For each approximately optimal solution (ξ̂in, ξ̂eq, µ̂aug) of (LSIP∗):

if µ̃aug ∈ Γaug(µ1, . . . , µN) satisfies

LT
inξ̂in + LT

eqξ̂eq − VT( ∫
X×S∗

2
λ µ̃aug(dx ,dλ)

)
= c1,

then ⟨qin, ξ̂in⟩+ ⟨qeq, ξ̂eq⟩+
∫
X×S∗

2
⟨Wx + b,λ⟩ µ̃aug(dx ,dλ) is a

lower bound for ϕDRO (with controlled quality).
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Approximation scheme

Step 4: Bounding from below

Definition (Partial reassembly)

Let X̄i := Xi for i = 1, . . . ,N. µ̃aug is called a partial reassembly of
µ̂aug ∈ P(X1 × · · · × XN × S∗

2 ) with the marginals µ1, . . . , µN if there exists a
probability measure γ ∈ P(X1 × · · · × XN × X̄1 × · · · × X̄N × S∗

2 ) such that:
1 the marginal of γ on X1 × · · · × XN × S∗

2 is µ̂aug;

2 for i = 1, . . . ,N, the marginal γi ∈ Γ(µ̂i , µi) of γ on Xi × X̄i satisfies∫
Xi×X̄i

|x − y | γi(dx ,dy)= W1(µ̂i , µi);

3 the marginal of γ on X̄1 × · · · × X̄N × S∗
2 is µ̃aug.

The set of partial reassemblies is denoted by

Rpart(µ̂aug;µ1, . . . , µN) ⊂ Γaug(µ1, . . . , µN).

Idea: morphing µ̂aug in an “optimal” way to turn its marginals on
X1, . . . ,XN into µ1, . . . , µN while leaving its marginal on S∗

2 unchanged.

One can construct a partial reassembly using Sklar’s theorem from
copula theory.
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Approximation scheme

Controlling the approximation error

Theorem (Approximation of two-stage DRO with marginal constraints)

Suppose that:
1 for i = 1, . . . ,N, Gi contains only continuous functions;
2 (â, ŷ0, ŷ) is an ϵ-optimal solution of (LSIP) for ϵ > 0;
3 (ξ̂in, ξ̂eq, µ̂aug) is an ϵ∗-optimal solution of (LSIP∗) for ϵ∗ > 0;
4 µ̃aug ∈ Rpart(µ̂aug;µ1, . . . , µN);
5 ϕUB

DRO := ⟨c1, â⟩+ ŷ0 + ⟨v , ŷ⟩;
6 ϕLB

DRO := ⟨qin, ξ̂in⟩+ ⟨qeq, ξ̂eq⟩+
∫
X×S∗

2
⟨Wx + b,λ⟩ µ̃aug(dx ,dλ);

7 ϵ̃ := ϵ+ ϵ∗ +
(∑N

i=1 supνi∈[µi ]Gi

{
W1(µi , νi)

})
supλ∈S∗

2

{
∥WTλ∥∞

}
.

Then,
ϕLB

DRO ≤ ϕDRO ≤ ϕUB
DRO with ϕUB

DRO − ϕLB
DRO ≤ ϵ̃;

â is an ϵ̂-optimal solution of the two-stage DRO problem, where
ϵ̂ := ϕUB

DRO − ϕLB
DRO ≤ ϵ̃.
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Approximation scheme

Practical questions

Question 1: for any ϵ > 0, can we obtain ϵ-optimal solutions of (LSIP)
and (LSIP∗)?

Answer 1: yes, we develop a suitable cutting-plane algorithm (inspired by
Conceptual Algorithm 11.4.1 of Goberna and López (1998)) to obtain
ϵ-optimal solutions of (LSIP) and (LSIP∗).

Question 2: can we numerically evaluate an integral with respect to a
µ̃aug ∈ Rpart(µ̂aug;µ1, . . . , µN)?

Answer 2: yes, using the copula theory, we develop an algorithm to explicitly
construct a partial reassembly and efficiently generate independent random
samples from it.

Question 3: can we control supνi∈[µi ]Gi

{
W1(µi , νi)

}
to be arbitrarily close

to 0 for i = 1, . . . ,N?
Answer 3: yes, for any ϵi > 0 we can explicitly construct a finite collection Gi

of continuous piece-wise affine functions with supνi∈[µi ]Gi

{
W1(µi , νi)

}
≤ ϵi .
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Numerical algorithm

Numerical algorithm

Putting these pieces together, we develop a numerical algorithm, whose
properties are summarized as follows.

Theorem (Properties of the proposed algorithm)

Under suitable conditions, for any ϵ̃ > 0, there exists inputs to the proposed
algorithm such that it produces the outputs: â, ϕLB

DRO, ϕUB
DRO such that

1 ϕLB
DRO ≤ ϕDRO ≤ ϕUB

DRO;
2 â is an ϵ̂-optimizer of the two-stage DRO problem, where ϵ̂ := ϕUB

DRO − ϕLB
DRO≤ ϵ̃.

Remark: the sub-optimality measure ϵ̂ can be computed, and it is often
much less conservative than its theoretical upper bound ϵ̃.
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Numerical algorithm

Convergence of the bounds

When appropriately chosen continuous piece-wise affine functions are
incrementally added to (Gi)i=1:N , the difference between the upper bound
ϕUB

DRO and the lower bound ϕLB
DRO goes to 0.
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Numerical example

Numerical example: supply chain network design
Settings:

We consider 15 suppliers, 20 processing facilities, 10 customers, 150 edges
with 25 susceptible to failure. (N = 10 + 25, K1 = 170, K2 = 150);
X1 = X2 = · · · = X10 = [0, 2], X11 = X12 = · · · = X35 = {0, 1}.
µ1, . . . , µ10 are mixture of truncated normal distributions.
Parameters in the model are randomly generated.

Result:
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The difference between the upper bound and the lower bound is ∼ 0.07.
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