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Two-stage distributionally robust optimization (DRO)

@ Two-stage distributionally robust optimization (DRO) problem:

®DRO = minimize (¢q,a) + sup / Q(a, x) p(dx)
a nEPX

subject to Lina < @, Leq@ = qeq, @< RK

@ First-stage decision variable a € R,

@ Uncertain quantity x € X := &y x --- x Xy C RN, where Xy,..., Xy are
compact subsets of R.

@ Px C P(X) is the ambiguity set of probability measures.
@ (cq, a) is the first-stage cost, Q(a, x) is the second-stage cost:
Q(a,x) = minimize (Cy, Z)
z

subject to  AjnZ < Vina + WinX + by,
Acqz = Veqa + WegX + beg,
z e Rk,
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Two-stage distributionally robust optimization (DRO)

@ We consider the case where Py is the set of couplings of fixed marginals
e P(X1)a <o N € 7D(Af./\/)

Pa =ty un) = {n € P(X)
the marginal of pon Ajis p; V1 <i < N}.
@ Motivation: there is much less ambiguity about the marginal distributions

than the dependence structure (Eckstein, Kupper, and Pohl 2020).
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Example: supply chain network design

@ a: investment for the processing facilities
@ x : demands of product & failure of edges
@ (c1,a): investment cost

@ Q(a, x) : transportation & processing costs

suppliers

processing
facilities

customers

@ Additional examples include: task scheduling, assemble-to-order system,
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Contributions

@ We develop a relaxation scheme for two-stage DRO with marginal
constraints such that the relaxation error can be controlled to be
arbitrarily close to 0.

@ We develop a numerical algorithm which computes:
e an approximately optimal solution 2 of ¢pro;
o upper bound ¢2, and lower bound ¢:5, such that ¢Exo < ¢dpro < dheo;

o &:=¢2B, — 9B, measuring the sub-optimality of 3, where ¢ can be
controlled to be arbitrarily close to 0 by the inputs of the algorithm.

@ We perform numerical experiments to demonstrate the proposed
algorithm in prominent decision problems including scheduling,
assemble-to-order system, and supply chain network design.
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Related studies

@ Gao and Kleywegt (2017) consider DRO with marginal constraints &
Wasserstein distance based constraint.

o Computation is only tractable when the marginals are discrete and when the
second-stage cost is the maximum of finitely many affine functions.

@ Chen, Ma, Natarajan, Simchi-Levi, and Yan (2021) deal with a particular
class of DRO problem with marginal constraints, most notably
appointment scheduling.

e Focuses on analysing the theoretical computational complexity.
@ No concrete numerical algorithm is provided.

@ Connection with multi-marginal optimal transport (MMOT):
Carlier, Oberman, Oudet (2015), Pass (2015), Benamou, Carlier, and
Nenna (2019), Peyré and Cuturi (2019), Benamou (2021),

Neufeld and Xiang (2022), ...
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Step 1: Augmentation

@ Recall that the two-stage DRO problem

ODRO = minimize (cy,a) + sup / Q(a, x) p(dx)
a HEPx
subject to  Lin@ < G, Leqd = gy, @ € R
has a min-max-min structure.

@ To begin, take the dual of the second-stage problem and represent

Q(a, x) = maxxes; { (Va+Wx + b, \) } for some polytope S; C RKz .

This transforms the problem into a min-max-max problem.
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Step 1: Augmentation

@ Next, to combine the two maximization steps, we augment Q(-, -) and
r(/"L17' .- ,/~LN):

Quug(@ x,A) ;== (Va+Wx + b, \) va, VX, VA,
raug(p,1 Yo 7,u,/\/) = {,uaug € P(X X Sg) :

the marginal of yi,, ON Ajis p; V1 < i < N}.

Lemma (Augmentation)
The following equality holds:

®DRO = mini;nize (c1,a) + sup / Quug(@, X, A) plaug(dx, dX)
X xS

Haug € raug(/“ s AN)

subjectto Lin@ < q;,, Leq@=q,q, @€ R
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Step 2: Relaxation

@ Relax the marginal constraints into finitely many linear constraints.

e Fixing a marginal can be seen as having infinitely many linear constraints.

@ Augmented couplings are replaced by a moment set:

Definition (Moment set (Neufeld and X. 2022))

Fori=1,...,N, [uig, is called a moment set centered at y; characterized by
functions g C [:1 (.X,, ,u,-): Vi € [,u,']gi =4 le_ gi dp,,‘ = fXI gi dy; Vg,' € g,.
Moreover,

raug([,u1]g17- cog) [MN]QN) = {Haug S raug(Vh---aVN) RS [,Ui]g; V1<i< N}

@ Relaxed two-stage DRO problem:
minimize (cy,a) + sup / Quug(@, X, A) plaug(dx, dX)
a Haug EMaug ([1]gy - [1n]gy) / XX S5

subject to  Lin@ < @, Leq@ =gy, @€ Rf.
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Step 3: Dualization

° Letg,-:~{g,-,1,...,g,-7,,,/.}fori:1,...,Nandletm::2f\i1 m;.
o g(X1,...,XN) = (91,1(X1),...,gN,mN(XN))T V(X1,...,XN) € X.

T

oV = (fX1 91,1 diL“""’fXNgN»mNdluN) .

@ Replacing the relaxed inner maximization problem by its dual yields the
following linear semi-infinite programming (LSIP) problem:

minimize (cy,a) + yo + (V,¥)
ayo.y

subject to  yo + (g(x),y) — (VTA,a) > (Wx + b, \)
Vxe X, VaeS;, (LSIP)

Lina < qin> Leqa = qeq>
acRN yeR, yeR™
@ Each approximately optimal solution (&, jio, ¥) of (LSIP) provides:

e an approximately optimal solution & of the DRO problem,
e an upper bound {¢1, &) + Jio + (v, §) for ¢gpro (with controlled quality).
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Step 4: Bounding from below

@ The problem (LSIP) admits the following dual:

maximize <qinv £in> + <qeq7 Eeq> + / <WX + bv >‘> Naug(dxv d)‘)
X xSy

in» € eqrHaug

subject to Ll &, + L] qbeq — T(fXng A Laug(dX, dA)) = ¢4, (LSIP¥)

éin <0, Maug € raug([/ﬁ]% yeees [NN]QN)7
5‘m € ]Rninv Eeq € Rneqv ﬂaug € P(X X S;)

~

@ For each approximately optimal solution (ém, Eeq flaug) Of (LSIP*):
@ if fiaug € Taug(pt1, - . ., ) satisfies

L;E'\éin + quéeq - VT( fXXS; A'l'hl"a‘~’g(d‘x7 dA)) = €1,

then <qin7£in> <ch7 eq + fXxS* WX + b A) Maug(dx dA) Isa
lower bound for ¢pro (with controlled quality).
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Step 4: Bounding from below

Definition (Partial reassembly)

Let ;.= X;fori=1,..., N. flaug is called a partial reassembly of
flaug € P(X1 x -+ x Xy x S3) with the marginals i1, ..., uy if there exists a
probability measure v € P(Xj x -+ x XAy x &y x -+ x Xy x S5) such that:

Q the marginal of v on Xy x - x Xy x 83 IS flaug;
Q fori=1,...,N, the marginal v; € I'(fi;, 1;) of v on X; x X; satisfies
S, 1X = Y1i(dx, dy) = Wi (i, )
© the marginal of y on Xy x -+ x Xy x S} i flaug.-
The set of partial reassemblies is denoted by

Rpart(ﬂaug; My aMN) - I_aug(lﬁ 9000 a:U’N)'

@ Idea: morphing fi.,g in an “optimal” way to turn its marginals on
Xy, ..., Xy into p1, ..., uy While leaving its marginal on S} unchanged.

@ One can construct a partial reassembly using Sklar’s theorem from
copula theory.
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Controlling the approximation error

Theorem (Approximation of two-stage DRO with marginal constraints)

Suppose that:
@ fori=1,...,N, G; contains only continuous functions;
@ (a4, i, ¥) is an e-optimal solution of (LSIP) fore > 0;
Q (&ins &eqs flaug) IS an e*-optimal solution of (LSIP*) for e* > 0;
o flaug € Rpart(,aaug; Py NS
Q ¢bRo = (€1,8) + Jo + (v, §);
e ¢DRO : <qm7 £1n> <qeq7 £eq> + -[.?C'XSZ* <WX + b7 A> ﬂaug(dxa d>‘):

Qé=cte+ (Zi:1 SUPy, efyule, { Wi (ki Vi)}) supxes; {[W'Alloo }-
Then,
® dpro < dprRO < BPRO With dPRG — dpRo < &

° a is an é- optlmal solution of the two-stage DRO problem, where

¢DRO DRO <E
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Practical questions

@ Question 1: for any € > 0, can we obtain e-optimal solutions of (LSIP)
and (LSIP*)?
o Answer 1: yes, we develop a suitable cutting-plane algorithm (inspired by
Conceptual Algorithm 11.4.1 of Goberna and Lépez (1998)) to obtain
e-optimal solutions of (LSIP) and (LSIP*).

@ Question 2: can we numerically evaluate an integral with respect to a
/N/faug € Rpart(ﬁaug; My 7MN)?
e Answer 2: yes, using the copula theory, we develop an algorithm to explicitly
construct a partial reassembly and efficiently generate independent random
samples from it.

@ Question 3: can we control sup,,c(,,j, {Wi(pi,vi)} to be arbitrarily close
toOfori=1,...,N?
@ Answer 3: yes, for any ¢; > 0 we can explicitly construct a finite collection G;
of continuous piece-wise affine functions with sup,, ¢, {Wi(pi,vi)} <ei.
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Numerical algorithm

@ Putting these pieces together, we develop a numerical algorithm, whose
properties are summarized as follows.

Theorem (Properties of the proposed algorithm)

Under suitable conditions, for any € > 0, there exists in Guts to the proposed
algorithm such that it produces the outputs: a, 53, ¢pso such that

Q ¢bro < doro < dDRos
© ais an ¢-optimizer of the two-stage DRO problem, where ¢ := ¢S5, — 5, < €.

@ Remark: the sub-optimality measure ¢ can be computed, and it is often
much less conservative than its theoretical upper bound &.
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Convergence of the bounds

@ When appropriately chosen continuous piece-wise affine functions are

incrementally added to (G;);-1.n, the difference between the upper bound
58, and the lower bound ¢:3, goes to 0.
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Numerical example: supply chain network design

@ Settings:

o We consider 15 suppliers, 20 processing facilities, 10 customers, 150 edges
with 25 susceptible to failure. (N =10 + 25, Ki = 170, K> = 150);

o X =X = =X;0=[0,2], X1y =Xj2=--- = X5 = {0,1}.
® u1,...,ut0 are mixture of truncated normal distributions.
e Parameters in the model are randomly generated.

@ Result:
lier;
suppliers sos2 _ueperbound _ _ _ _ _ _ J
sast
w09
o
processing goom
tagilities foowr
] )
L =
Y — E
|
w0 +
customers o

The difference between the upper bound and the lower bound is ~ 0.07.
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