Numerical method for approximately optimal solutions of two-stage distributionally robust optimization with marginal constraints

Qikun Xiang

Nanyang Technological University, Singapore

June 30, 2022

Joint work with:

Ariel Neufeld, Nanyang Technological University, Singapore Introduction

Two-stage distributionally robust optimization (DRO)

Two-stage distributionally robust optimization (DRO) problem:

$$\begin{split} \phi_{\text{DRO}} := & \min_{\boldsymbol{a}} \operatorname{inimize} \quad \langle \boldsymbol{c}_1, \boldsymbol{a} \rangle + \sup_{\boldsymbol{\mu} \in \mathcal{P}_{\boldsymbol{\mathcal{X}}}} \int_{\boldsymbol{\mathcal{X}}} Q(\boldsymbol{a}, \boldsymbol{x}) \, \boldsymbol{\mu}(\mathrm{d}\boldsymbol{x}) \\ & \text{subject to} \quad \boldsymbol{\mathsf{L}}_{\text{in}} \boldsymbol{a} \leq \boldsymbol{q}_{\text{in}}, \, \boldsymbol{\mathsf{L}}_{\text{eq}} \boldsymbol{a} = \boldsymbol{q}_{\text{eq}}, \, \boldsymbol{a} \in \mathbb{R}^{K_1}. \end{split}$$

- First-stage decision variable $\boldsymbol{a} \in \mathbb{R}^{K_1}$.
- Uncertain quantity *x* ∈ *X* := *X*₁ × · · · × *X*_N ⊂ ℝ^N, where *X*₁, . . . , *X*_N are compact subsets of ℝ.
- $\mathcal{P}_{\mathcal{X}} \subseteq \mathcal{P}(\mathcal{X})$ is the ambiguity set of probability measures.
- $\langle \boldsymbol{c}_1, \boldsymbol{a} \rangle$ is the first-stage cost, $Q(\boldsymbol{a}, \boldsymbol{x})$ is the second-stage cost: $Q(\boldsymbol{a}, \boldsymbol{x}) := \min_{\boldsymbol{z}} \langle \boldsymbol{c}_2, \boldsymbol{z} \rangle$ subject to $A_{in}\boldsymbol{z} \leq V_{in}\boldsymbol{a} + W_{in}\boldsymbol{x} + \boldsymbol{b}_{in},$ $A_{eq}\boldsymbol{z} = V_{eq}\boldsymbol{a} + W_{eq}\boldsymbol{x} + \boldsymbol{b}_{eq},$ $\boldsymbol{z} \in \mathbb{R}^{K_2}$

Introduction

Two-stage distributionally robust optimization (DRO)

We consider the case where P_X is the set of couplings of fixed marginals μ₁ ∈ P(X₁),..., μ_N ∈ P(X_N):

$$\mathcal{P}_{\boldsymbol{\mathcal{X}}} = \mathsf{\Gamma}(\mu_1, \dots, \mu_N) := \Big\{ \mu \in \mathcal{P}(\boldsymbol{\mathcal{X}}) : \|$$

the marginal of μ on \mathcal{X}_i is $\mu_i \forall 1 \le i \le N$.

• **Motivation:** there is much less ambiguity about the marginal distributions than the dependence structure (Eckstein, Kupper, and Pohl 2020).

Introduction

Example: supply chain network design

- a: investment for the processing facilities
- x : demands of product & failure of edges
- (c₁, a): investment cost
- Q(a, x) : transportation & processing costs

Additional examples include: task scheduling, assemble-to-order system,

...

Contributions

- We develop a relaxation scheme for two-stage DRO with marginal constraints such that the relaxation error can be controlled to be arbitrarily close to 0.
- We develop a numerical algorithm which computes:
 - an approximately optimal solution â of \(\phi_{DRO}\);
 - upper bound $\phi_{\text{DRO}}^{\text{UB}}$ and lower bound $\phi_{\text{DRO}}^{\text{LB}}$ such that $\phi_{\text{DRO}}^{\text{LB}} \leq \phi_{\text{DRO}} \leq \phi_{\text{DRO}}^{\text{UB}}$;
 - *ê* := φ^{UB}_{DRO} − φ^{LB}_{DRO} measuring the sub-optimality of *â*, where *ê* can be controlled to be arbitrarily close to 0 by the inputs of the algorithm.
- We perform numerical experiments to demonstrate the proposed algorithm in prominent decision problems including scheduling, assemble-to-order system, and supply chain network design.

Related studies

Related studies

- Gao and Kleywegt (2017) consider DRO with marginal constraints & Wasserstein distance based constraint.
 - Computation is only tractable when the marginals are discrete and when the second-stage cost is the maximum of finitely many affine functions.
- Chen, Ma, Natarajan, Simchi-Levi, and Yan (2021) deal with a particular class of DRO problem with marginal constraints, most notably appointment scheduling.
 - Focuses on analysing the theoretical computational complexity.
 - No concrete numerical algorithm is provided.
- Connection with multi-marginal optimal transport (MMOT): Carlier, Oberman, Oudet (2015), Pass (2015), Benamou, Carlier, and Nenna (2019), Peyré and Cuturi (2019), Benamou (2021), Neufeld and Xiang (2022), ...

Step 1: Augmentation

Recall that the two-stage DRO problem

$$\begin{split} \phi_{\mathrm{DRO}} := & \min_{\boldsymbol{a}} \operatorname{minimize} \quad \langle \boldsymbol{c}_{1}, \boldsymbol{a} \rangle + \sup_{\boldsymbol{\mu} \in \mathcal{P}_{\boldsymbol{\mathcal{X}}}} \int_{\boldsymbol{\mathcal{X}}} Q(\boldsymbol{a}, \boldsymbol{x}) \, \boldsymbol{\mu}(\mathrm{d}\boldsymbol{x}) \\ & \text{subject to} \quad \boldsymbol{\mathsf{L}}_{\mathrm{in}} \boldsymbol{a} \leq \boldsymbol{q}_{\mathrm{in}}, \, \boldsymbol{\mathsf{L}}_{\mathrm{eq}} \boldsymbol{a} = \boldsymbol{q}_{\mathrm{eq}}, \, \boldsymbol{a} \in \mathbb{R}^{K_{1}} \end{split}$$

has a min-max-min structure.

• To begin, take the dual of the second-stage problem and represent $Q(a, x) = \max_{\lambda \in S_2^*} \{ \langle Va + Wx + b, \lambda \rangle \}$ for some polytope $S_2^* \subset \mathbb{R}^{K_2^*}$. This transforms the problem into a min-max-max problem.

Step 1: Augmentation

• Next, to combine the two maximization steps, we augment $Q(\cdot, \cdot)$ and $\Gamma(\mu_1, \ldots, \mu_N)$:

$$Q_{\text{aug}}(\boldsymbol{a}, \boldsymbol{x}, \boldsymbol{\lambda}) := \langle \boldsymbol{V}\boldsymbol{a} + \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}, \boldsymbol{\lambda} \rangle \qquad \forall \boldsymbol{a}, \ \forall \boldsymbol{x}, \ \forall \boldsymbol{\lambda},$$
$$\Gamma_{\text{aug}}(\mu_1, \dots, \mu_N) := \left\{ \mu_{\text{aug}} \in \mathcal{P}(\boldsymbol{\mathcal{X}} \times \boldsymbol{S}_2^*) : \right.$$

the marginal of μ_{aug} on \mathcal{X}_i is $\mu_i \forall 1 \le i \le N$.

Lemma (Augmentation)

The following equality holds:

$$\begin{split} \phi_{\text{DRO}} &= \underset{\boldsymbol{a}}{\text{minimize}} \quad \langle \boldsymbol{c}_{1}, \boldsymbol{a} \rangle + \underset{\mu_{\text{aug}} \in \Gamma_{\text{aug}}(\mu_{1}, \dots, \mu_{N})}{\sup} \int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} Q_{\text{aug}}(\boldsymbol{a}, \boldsymbol{x}, \lambda) \, \mu_{\text{aug}}(\text{d}\boldsymbol{x}, \text{d}\lambda) \\ &\text{subject to} \quad \boldsymbol{\mathsf{L}}_{\text{in}} \boldsymbol{a} \leq \boldsymbol{q}_{\text{in}}, \ \boldsymbol{\mathsf{L}}_{\text{eq}} \boldsymbol{a} = \boldsymbol{q}_{\text{eq}}, \ \boldsymbol{a} \in \mathbb{R}^{K_{1}}. \end{split}$$

Step 2: Relaxation

- Relax the marginal constraints into finitely many linear constraints.
 - Fixing a marginal can be seen as having infinitely many linear constraints.
- Augmented couplings are replaced by a moment set:

Definition (Moment set (Neufeld and X. 2022))

For i = 1, ..., N, $[\mu_i]_{\mathcal{G}_i}$ is called a moment set centered at μ_i characterized by functions $\mathcal{G}_i \subset \mathcal{L}^1(\mathcal{X}_i, \mu_i)$: $\nu_i \in [\mu_i]_{\mathcal{G}_i} \iff \int_{\mathcal{X}_i} g_i \, \mathrm{d}\mu_i = \int_{\mathcal{X}_i} g_i \, \mathrm{d}\nu_i \, \forall g_i \in \mathcal{G}_i$. Moreover,

$$\Gamma_{\mathrm{aug}}([\mu_1]_{\mathcal{G}_1},\ldots,[\mu_N]_{\mathcal{G}_N}):=\Big\{\mu_{\mathrm{aug}}\in\Gamma_{\mathrm{aug}}(\nu_1,\ldots,\nu_N):\nu_i\in[\mu_i]_{\mathcal{G}_i}\;\forall 1\leq i\leq N\Big\}.$$

Relaxed two-stage DRO problem:

 $\begin{array}{ll} \underset{\boldsymbol{a}}{\text{minimize}} & \langle \boldsymbol{c}_{1}, \boldsymbol{a} \rangle + \sup_{\mu_{\text{aug}} \in \Gamma_{\text{aug}}([\mu_{1}]_{\mathcal{G}_{1}}, \dots, [\mu_{N}]_{\mathcal{G}_{N}})} \int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} Q_{\text{aug}}(\boldsymbol{a}, \boldsymbol{x}, \lambda) \, \mu_{\text{aug}}(\mathrm{d}\boldsymbol{x}, \mathrm{d}\lambda) \\ \text{subject to} & \boldsymbol{\mathsf{L}}_{\text{in}} \boldsymbol{a} \leq \boldsymbol{q}_{\text{in}}, \ \boldsymbol{\mathsf{L}}_{\text{eq}} \boldsymbol{a} = \boldsymbol{q}_{\text{eq}}, \ \boldsymbol{a} \in \mathbb{R}^{K_{1}}. \end{array}$

Step 3: Dualization

• Let
$$\mathcal{G}_i = \{g_{i,1}, \dots, g_{i,m_i}\}$$
 for $i = 1, \dots, N$ and let $m := \sum_{i=1}^N m_i$.
• $g(x_1, \dots, x_N) := (g_{1,1}(x_1), \dots, g_{N,m_N}(x_N))^{\mathsf{T}} \quad \forall (x_1, \dots, x_N) \in \mathcal{X}$.
• $\mathbf{v} := \left(\int_{\mathcal{X}_1} g_{1,1} \, \mathrm{d}\mu_1, \dots, \int_{\mathcal{X}_N} g_{N,m_N} \, \mathrm{d}\mu_N\right)^{\mathsf{T}}$.

 Replacing the relaxed inner maximization problem by its dual yields the following linear semi-infinite programming (LSIP) problem:

$$\begin{array}{ll} \underset{\boldsymbol{a},y_{0},\boldsymbol{y}}{\text{minimize}} & \langle \boldsymbol{c}_{1},\boldsymbol{a} \rangle + y_{0} + \langle \boldsymbol{v},\boldsymbol{y} \rangle \\ \text{subject to} & y_{0} + \langle \boldsymbol{g}(\boldsymbol{x}),\boldsymbol{y} \rangle - \langle \boldsymbol{V}^{\mathsf{T}}\boldsymbol{\lambda},\boldsymbol{a} \rangle \geq \langle \boldsymbol{\mathsf{W}}\boldsymbol{x} + \boldsymbol{b},\boldsymbol{\lambda} \rangle \\ & \forall \boldsymbol{x} \in \boldsymbol{\mathcal{X}}, \ \forall \boldsymbol{\lambda} \in S_{2}^{*}, \quad \text{(LSIP)} \\ & \mathsf{L}_{\text{in}}\boldsymbol{a} \leq \boldsymbol{q}_{\text{in}}, \ \mathsf{L}_{\text{eq}}\boldsymbol{a} = \boldsymbol{q}_{\text{eq}}, \\ & \boldsymbol{a} \in \mathbb{R}^{K_{1}}, \ y_{0} \in \mathbb{R}, \ \boldsymbol{y} \in \mathbb{R}^{m}. \end{array}$$

- Each approximately optimal solution $(\hat{a}, \hat{y}_0, \hat{y})$ of (LSIP) provides:
 - an approximately optimal solution \hat{a} of the DRO problem,
 - an upper bound $\langle \boldsymbol{c}_1, \hat{\boldsymbol{a}} \rangle + \hat{\boldsymbol{y}}_0 + \langle \boldsymbol{v}, \hat{\boldsymbol{y}} \rangle$ for ϕ_{DRO} (with controlled quality).

Approximation scheme

Step 4: Bounding from below

• The problem (LSIP) admits the following dual:

$$\begin{array}{ll} \underset{\boldsymbol{\xi}_{in},\boldsymbol{\xi}_{eq},\mu_{aug}}{\operatorname{maximize}} & \langle \boldsymbol{q}_{in},\boldsymbol{\xi}_{in} \rangle + \langle \boldsymbol{q}_{eq},\boldsymbol{\xi}_{eq} \rangle + \int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} \langle \boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}, \lambda \rangle \, \mu_{aug}(d\boldsymbol{x}, d\lambda) \\ \text{subject to} & \boldsymbol{\mathsf{L}}_{in}^{\mathsf{T}} \boldsymbol{\xi}_{in} + \boldsymbol{\mathsf{L}}_{eq}^{\mathsf{T}} \boldsymbol{\xi}_{eq} - \boldsymbol{\mathsf{V}}^{\mathsf{T}} \big(\int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} \lambda \, \mu_{aug}(d\boldsymbol{x}, d\lambda) \big) = \boldsymbol{c}_{1}, \qquad (\mathsf{LSIP}^{*}) \\ & \boldsymbol{\xi}_{in} \leq \boldsymbol{0}, \, \mu_{aug} \in \Gamma_{aug} \big([\mu_{1}]_{\mathcal{G}_{1}}, \dots, [\mu_{N}]_{\mathcal{G}_{N}} \big), \\ & \boldsymbol{\xi}_{in} \in \mathbb{R}^{n_{in}}, \, \boldsymbol{\xi}_{eq} \in \mathbb{R}^{n_{eq}}, \, \mu_{aug} \in \mathcal{P}(\boldsymbol{\mathcal{X}} \times S_{2}^{*}). \end{array}$$

• For each approximately optimal solution $(\hat{\xi}_{in}, \hat{\xi}_{eq}, \hat{\mu}_{aug})$ of (LSIP^{*}):

• if
$$\tilde{\mu}_{aug} \in \Gamma_{aug}(\mu_1, \dots, \mu_N)$$
 satisfies

$$\boldsymbol{\mathsf{L}}_{\text{in}}^{\mathsf{T}} \hat{\boldsymbol{\xi}}_{\text{in}} + \boldsymbol{\mathsf{L}}_{\text{eq}}^{\mathsf{T}} \hat{\boldsymbol{\xi}}_{\text{eq}} - \boldsymbol{\mathsf{V}}^{\mathsf{T}} \big(\int_{\boldsymbol{\mathcal{X}} \times S_{2}^{*}} \boldsymbol{\lambda} \, \tilde{\boldsymbol{\mu}}_{\text{aug}}(\mathrm{d}\boldsymbol{\boldsymbol{x}}, \mathrm{d}\boldsymbol{\lambda}) \big) = \boldsymbol{c}_{1},$$

then $\langle \boldsymbol{q}_{in}, \hat{\boldsymbol{\xi}}_{in} \rangle + \langle \boldsymbol{q}_{eq}, \hat{\boldsymbol{\xi}}_{eq} \rangle + \int_{\boldsymbol{\mathcal{X}} \times S_2^*} \langle \boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}, \boldsymbol{\lambda} \rangle \, \tilde{\mu}_{aug}(d\boldsymbol{x}, d\boldsymbol{\lambda}) \text{ is a lower bound for } \phi_{DRO} \text{ (with controlled quality).}$

Qikun Xiang (NTU, Singapore)

Step 4: Bounding from below

Definition (Partial reassembly)

Let $\bar{\mathcal{X}}_i := \mathcal{X}_i$ for i = 1, ..., N. $\tilde{\mu}_{aug}$ is called a partial reassembly of $\hat{\mu}_{aug} \in \mathcal{P}(\mathcal{X}_1 \times \cdots \times \mathcal{X}_N \times S_2^*)$ with the marginals $\mu_1, ..., \mu_N$ if there exists a probability measure $\gamma \in \mathcal{P}(\mathcal{X}_1 \times \cdots \times \mathcal{X}_N \times \bar{\mathcal{X}}_1 \times \cdots \times \bar{\mathcal{X}}_N \times S_2^*)$ such that:

• the marginal of γ on $\mathcal{X}_1 \times \cdots \times \mathcal{X}_N \times S_2^*$ is $\hat{\mu}_{aug}$;

- Of or *i* = 1,..., *N*, the marginal $\gamma_i \in \Gamma(\hat{\mu}_i, \mu_i)$ of γ on $\mathcal{X}_i \times \bar{\mathcal{X}}_i$ satisfies $\int_{\mathcal{X}_i \times \bar{\mathcal{X}}_i} |x - y| \gamma_i(dx, dy) = W_1(\hat{\mu}_i, \mu_i);$
- the marginal of γ on $\bar{\mathcal{X}}_1 \times \cdots \times \bar{\mathcal{X}}_N \times S_2^*$ is $\tilde{\mu}_{aug}$.

The set of partial reassemblies is denoted by

 $R_{\text{part}}(\hat{\mu}_{\text{aug}};\mu_1,\ldots,\mu_N) \subset \Gamma_{\text{aug}}(\mu_1,\ldots,\mu_N).$

- Idea: morphing μ̂_{aug} in an "optimal" way to turn its marginals on *X*₁,..., *X_N* into μ₁,..., μ_N while leaving its marginal on *S*^{*}₂ unchanged.
- One can construct a partial reassembly using Sklar's theorem from copula theory.

Qikun Xiang (NTU, Singapore)

ECSO-CMS Venice

Controlling the approximation error

Theorem (Approximation of two-stage DRO with marginal constraints)

Suppose that:

- for i = 1, ..., N, G_i contains only continuous functions;
- ($\hat{a}, \hat{y}_0, \hat{y}$) is an ϵ -optimal solution of (LSIP) for $\epsilon > 0$;
- $(\hat{\xi}_{in}, \hat{\xi}_{eq}, \hat{\mu}_{aug}) \text{ is an } \epsilon^* \text{-optimal solution of } (\mathsf{LSIP}^*) \text{ for } \epsilon^* > 0;$

•
$$ilde{\mu}_{ ext{aug}} \in R_{ ext{part}}(\hat{\mu}_{ ext{aug}};\mu_1,\ldots,\mu_N),$$

$$\mathbf{S} \ \phi_{\mathrm{DRO}}^{\mathsf{UB}} := \langle \boldsymbol{c}_1, \hat{\boldsymbol{a}} \rangle + \hat{y}_0 + \langle \boldsymbol{v}, \hat{\boldsymbol{y}} \rangle;$$

$$\circ \tilde{\epsilon} := \epsilon + \epsilon^* + \left(\sum_{i=1}^N \sup_{\nu_i \in [\mu_i]_{\mathcal{G}_i}} \left\{ W_1(\mu_i, \nu_i) \right\} \right) \sup_{\lambda \in S_2^*} \left\{ \| \mathbf{W}^\mathsf{T} \lambda \|_\infty \right\}.$$

Then,

•
$$\phi_{\text{DRO}}^{\text{LB}} \le \phi_{\text{DRO}} \le \phi_{\text{DRO}}^{\text{UB}}$$
 with $\phi_{\text{DRO}}^{\text{UB}} - \phi_{\text{DRO}}^{\text{LB}} \le \tilde{\epsilon}$;

• \hat{a} is an $\hat{\epsilon}$ -optimal solution of the two-stage DRO problem, where $\hat{\epsilon} := \phi_{\text{DRO}}^{\text{UB}} - \phi_{\text{DRO}}^{\text{LB}} \leq \tilde{\epsilon}$.

Practical questions

- Question 1: for any ε > 0, can we obtain ε-optimal solutions of (LSIP) and (LSIP*)?
 - Answer 1: yes, we develop a suitable cutting-plane algorithm (inspired by Conceptual Algorithm 11.4.1 of Goberna and López (1998)) to obtain *ε*-optimal solutions of (LSIP) and (LSIP*).
- Question 2: can we numerically evaluate an integral with respect to a $\tilde{\mu}_{aug} \in R_{part}(\hat{\mu}_{aug}; \mu_1, \dots, \mu_N)$?
 - Answer 2: yes, using the copula theory, we develop an algorithm to explicitly construct a partial reassembly and efficiently generate independent random samples from it.
- Question 3: can we control sup_{νi∈[μi]Gi} {W₁(μi, νi)} to be arbitrarily close to 0 for i = 1,..., N?
 - Answer 3: yes, for any ε_i > 0 we can explicitly construct a finite collection G_i of continuous piece-wise affine functions with sup_{νi∈[μi]Gi} {W₁(μi, νi)} ≤ ε_i.

Numerical algorithm

• Putting these pieces together, we develop a numerical algorithm, whose properties are summarized as follows.

Theorem (Properties of the proposed algorithm)

Under suitable conditions, for any $\tilde{\epsilon} > 0$, there exists inputs to the proposed algorithm such that it produces the outputs: \hat{a} , $\phi_{\text{DRO}}^{\text{LB}}$, $\phi_{\text{DRO}}^{\text{UB}}$ such that

- $\ \, \bullet _{\rm DRO}^{\rm LB} \leq \phi_{\rm DRO} \leq \phi_{\rm DRO}^{\rm UB};$
- 2) \hat{a} is an $\hat{\epsilon}$ -optimizer of the two-stage DRO problem, where $\hat{\epsilon} := \phi_{\text{DRO}}^{\text{UB}} \phi_{\text{DRO}}^{\text{LB}} \leq \tilde{\epsilon}$.

Numerical algorithm

Convergence of the bounds

• When appropriately chosen continuous piece-wise affine functions are incrementally added to $(\mathcal{G}_i)_{i=1:N}$, the difference between the upper bound $\phi_{\text{DRO}}^{\text{UB}}$ and the lower bound $\phi_{\text{DRO}}^{\text{LB}}$ goes to 0.

Numerical example

Numerical example: supply chain network design

Settings:

We consider 15 suppliers, 20 processing facilities, 10 customers, 150 edges with 25 susceptible to failure. (N = 10 + 25, K₁ = 170, K₂ = 150);

•
$$\mathcal{X}_1 = \mathcal{X}_2 = \dots = \mathcal{X}_{10} = [0, 2], \ \mathcal{X}_{11} = \mathcal{X}_{12} = \dots = \mathcal{X}_{35} = \{0, 1\}.$$

- μ_1, \ldots, μ_{10} are mixture of truncated normal distributions.
- Parameters in the model are randomly generated.

The difference between the upper bound and the lower bound is \sim 0.07.

- A. Neufeld and Q. Xiang. Numerical method for approximately optimal solutions of two-stage distributionally robust optimization with marginal constraints. Preprint, arXiv:2205.05315, 2022. URL: https://arxiv.org/abs/2205.05315
- R. Gao, A. J. Kleywegt. Data-driven robust optimization with known marginal distributions. Working paper, 2017.
- L. Chen, W. Ma, K. Natarajan, D. Simchi-Levi, Z. Yan. Distributionally robust linear and discrete optimization with marginals. *Operations Research*, 2021.
- M. A. Goberna and M. A. López. *Linear semi-infinite optimization*. John Wiley & Sons, 1998.