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Optimal transport and Wasserstein barycenter

Optimal transport

Motivation: given two probability measures µ, ν ∈ P2(Rd), determine the most economical
way of transporting the mass from µ to ν under the cost Rd × Rd ∋ (x,y) 7→ ∥x− y∥2 ∈ R.

Monge’s problem:

inf
T:Rd→Rd, T♯µ=ν

{∫
Rd

∥∥x− T(x)
∥∥2

µ(dx)
}
. (MP)

Kantorovich’s (relaxed) problem:

inf
π∈Π(µ,ν)

{∫
Rd×Rd

∥x− y∥2 π(dx,dy)
}
, (KP)

where Π(µ, ν) := {π ∈ P(Rd × Rd) : π has marginals µ and ν} denotes the set of couplings.

While (MP) can be infeasible as it does not allow mass to be split, (KP) is always feasible and
an optimal coupling is always attained.
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Optimal transport and Wasserstein barycenter

Properties of optimal transport

For continuous µ ∈ P2,ac(Rd), (KP) and (MP) are related via Brenier’s theorem.

Theorem (Brenier [1991])

Let µ ∈ P2,ac(Rd). Then, there exists a unique optimal coupling π⋆ for (KP).
Moreover, there exists a convex lower semi-continuous φµ

ν : Rd → R ∪ {∞} such that
Tµ
ν := ∇φµ

ν solves (MP) and π⋆ = [Id,Tµ
ν ]♯µ.

We call φµ
ν the optimal Brenier potential and call Tµ

ν the optimal transport (OT) map.

Caffarelli’s regularity theory provides sufficient conditions for the regularity of φµ
ν .

Theorem (Caffarelli [1990, 1991, 1992, 1996])

Let µ, ν ∈ P2,ac(Rd) be concentrated on bounded open sets Xµ,Xν that are uniformly
convex and have C2 boundaries. If the density of µ (resp. ν) are positive on Xµ (resp.
Xν) and belong to Ck,α(Xµ) (resp. Ck,α(Xν)), i.e., k times differentiable with α-Hölder
partial derivatives, then it holds that φµ

ν ∈ Ck+2,α(Xµ).
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Optimal transport and Wasserstein barycenter

Wasserstein distance and Wasserstein barycenter

The 2-Wasserstein distance between µ, ν ∈ P2(Rd) is defined as

W2(µ, ν) :=

{
inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥2 π(dx,dy)
} 1

2

.

W2(·, ·) metrizes weak convergence in P2(Rd).

Given ν1, . . . , νK ∈ P2(Rd), let V(µ) := 1
K

∑K
k=1W2(µ, νk)

2. Then, µ̄ ∈ P2(Rd) is called a
Wasserstein barycenter of ν1, . . . , νK [Agueh and Carlier 2011] if

µ̄ ∈ argmin
µ∈P2(Rd)

V(µ).
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Optimal transport and Wasserstein barycenter

Literature review

Applications of Wasserstein barycenter: Bayesian statistics (e.g., Srivastava, Li, Dunson
[2018]), unsupervised clustering (e.g., Ye et al. [2017]), pattern recognition (e.g., Tabak,
Trigila, Zhao [2022]), etc.

Existing numerical methods for Wasserstein barycenter:

Parametric Wasserstein barycenter: applicable when ν1, . . . , νK are certain parametric measures
(e.g., Gaussian); see, e.g., Álvarez-Esteban et al. [2016], Chewi et al. [2020].

Discrete Wasserstein barycenter: applicable when ν1, . . . , νK are discrete measures; see, e.g.,
Cuturi and Doucet [2014], Benamou et al. [2015], and Anderes, Borgwardt, Miller [2016].

Fixed-support methods: restrict the support of the Wasserstein barycenter to a prespecified finite
set and optimize over a finite number of probabilities; see, e.g., Staib et al. [2017], Claici, Chien,
Solomon [2018], Dvurechenskii et al. [2018].

Neural network-based methods: parametrize φµ
ν and/or µ̄ with neural networks and optimize over

neural network parameters; see,e.g.,Fan,Taghvaei,Chen[2020],Li et al. [2020],Korotin et al. [2021].

Our contribution: we propose a provably convergent algorithm for approximating the
free-support Wasserstein barycenter of non-parametric continuous measures.
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Stochastic fixed-point algorithm for Wasserstein barycenter

Preliminaries

Álvarez-Esteban, del Barrio, Cuesta-Albertos, and Matrán [2016] have shown that the
Wasserstein barycenter µ̄ is a fixed-point of G(µ) :=

[ 1
K

∑K
k=1 Tµ

νk

]
♯µ, i.e., G(µ̄) = µ̄.

Algorithm: Deterministic fixed-point scheme

Input: K input measures ν1, . . . , νK ∈ P2,ac(Rd), initial measure µ0 ∈ P2,ac(Rd).
Output: (µt)t∈N0 .

1 for t = 0, 1, 2, . . . do
2 for k = 1, . . . ,K do
3 Get the OT map Tµt

νk
.

4 µt+1 ←
[ 1

K

∑K
k=1 Tµt

νk

]
♯µt.

Theorem (Corollary 3.5 & Theorem 3.6 of Álvarez-Esteban et al. [2016])

(µt)t≥0 is tight and everyW2-accumulation point of (µt)t≥0 is a fixed-point of G.
In particular, if G has a unique fixed-point, then µt

W2−→ µ̄ as t→∞.

However, for general non-parametric νk, the computation of Tµt
νk

is intractable, and thus the
deterministic fixed-point scheme does not lead to a computationally tractable algorithm.
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Stochastic fixed-point algorithm for Wasserstein barycenter

Conceptual approach

Conceptual approach: we estimate Tµt
νk

using samples from µt and νk and extend this
scheme to a stochastic fixed-point algorithm.

Algorithm: Stochastic fixed-point algorithm (conceptual)

Input: K input measures ν1, . . . , νK ∈ P2,ac(Rd), initial measure µ0 ∈ P2,ac(Rd).
Output: (µ̂t)t∈N0 .

1 Initialize µ̂0 ← µ0.
2 for t = 0, 1, 2, . . . do
3 for k = 1, . . . ,K do
4 Randomly generate Nt,k i.i.d. samples {Xt+1,k,i}i=1:Nt,k from µ̂t.
5 Randomly generate Nt,k i.i.d. samples {Yt+1,k,i}i=1:Nt,k from νk.
6 Approximate Tµ̂t

νk
with an estimator T̂t+1,k ≈ Tµ̂t

νk
using the samples {Xt+1,k,i}i=1:Nt,k

and {Yt+1,k,i}i=1:Nt,k .

7 Choose µ̂t+1 ∈ P2,ac(Rd) such that µ̂t+1 ≈
[ 1

K

∑K
k=1 T̂t+1,k

]
♯µ̂t.
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Stochastic fixed-point algorithm for Wasserstein barycenter

Settings

Admissible support sets:

S :=
{

cl(Y) : Y ⊂ Rd is open, bounded, uniformly convex, and has a C2-boundary
}
.

Admissible fully supported probability measures:

Mfull :=
{
ρ ∈ P2,ac(Rd) : supp(ρ) = Rd, the density of ρ is locally α-Hölder and positive

}
.

Admissible compactly supported probability measures:

M :=
{
µ ∈ P2,ac(Rd) : supp(µ) ∈ S, the density of µ is α-Hölder and positive on supp(µ)

}
.

In particular, ρ|X (·) := ρ( · ∩X )
ρ(X ) ∈M for any ρ ∈Mfull and any X ∈ S.

For any µ, ν ∈M, the regularity properties of φµ
ν is implied by Caffarelli’s regularity theory.
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Stochastic fixed-point algorithm for Wasserstein barycenter

Settings

Family (Xr)r∈N of increasing admissible support sets used for adjusting the support of (µ̂t)t≥0:
Xr ∈ S, Xr+1 ⊇ Xr ∀r ∈ N,

⋃
r∈N Xr = Rd; e.g., the family of scaled unit balls.

Plug-in OT map estimator T̂µ,m
ν,n ( · ; θ) estimates Tµ

ν based on m samples from µ and n samples
from ν with smoothing parameter θ, subject to:

Shape condition: T̂µ,m
ν,n ( · ; θ) = ∇φ̂µ,m

ν,n ( · ; θ), φ̂µ,m
ν,n ( · ; θ) ∈ C2,α(Rd) is λ-smooth, λ-strongly convex

(preserves the regularity of µ̂t);

Growth condition: E
[∥∥T̂µ,m

ν,n (x; θ)
∥∥2
]
≤ u1(ν) + u2(ν)∥x∥2 ∀x ∈ Rd where u1(ν), u2(ν) depend on ν

(controls the approximation error of µ̂t+1 ≈
[ 1

K

∑K
k=1 T̂t+1,k

]
♯µ̂t);

Consistency condition: for all ϵ > 0, there exist θ(µ, ν, ϵ) and n(µ, ν, ϵ) depending on µ, ν, ϵ, such
that E

[∥∥T̂µ,m
ν,n ( · ; θ)− Tµ

ν

∥∥2
L2(µ)

]
≤ ϵ ∀θ ≥ θ(µ, ν, ϵ), ∀m ≥ n(µ, ν, ϵ), ∀n ≥ n(µ, ν, ϵ) (controls the

estimation error of T̂t+1,k ≈ Tµ̂t
νk

).
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Stochastic fixed-point algorithm for Wasserstein barycenter

Concrete fixed-point algorithm

Algorithm: Stochastic fixed-point algorithm (concrete)
Input: K input measures ν1, . . . , νK ∈M, ρ0 ∈Mfull, family (Xr)r∈N of increasing sets,

plug-in OT map estimator T̂µ,m
ν,n ( · ; θ).

Output: (µ̂t)t∈N0 .
1 Initialize ρ̂0 ← ρ0.
2 for t = 0, 1, 2, . . . do
3 Choose Rt ∈ N.
4 µ̂t ← ρ̂t|XRt

.
5 for k = 1, . . . ,K do
6 Choose Θt,k ∈ N and Nt,k ∈ N.
7 Randomly generate Nt,k i.i.d. samples {Xt+1,k,i}i=1:Nt,k from µ̂t.
8 Randomly generate Nt,k i.i.d. samples {Yt+1,k,i}i=1:Nt,k from νk.
9 T̂t+1,k ← T̂µ,m

ν,n ( · ; θ)
∣∣
µ=µ̂t, ν=νk, θ=Θt,k, m=n=Nt,k

.

10 ρ̂t+1 ←
[

1
K

∑K
k=1 T̂t+1,k

]
♯ρ̂t.
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Stochastic fixed-point algorithm for Wasserstein barycenter

Convergence analysis

Theorem (Convergence of the stochastic fixed-point algorithm)

Let
(
Ω,F ,P, (Ft)t≥0

)
be the filtered probability space induced by the stochastic fixed-point

algorithm where Ft is the σ-algebra generated by all samples up to iteration t. Let β > 0. Then,
one can explicitly construct (Ft)t≥0-adapted stochastic processes (Rt)t≥0, (Θt,k)t≥0, k=1:K, and
(Nt,k)t≥0, k=1:K:

R0 := r2(ρ̂0, ν1, . . . , νK, 1),

Rt := max
{

r1
(
ρ̂t, t−(1+β)

)
, r2

(
ρ̂t, ν1, . . . , νK, (t + 1)−2(1+β)

)}
∀t ≥ 1,

Θt,k := θ
(
µ̂t, νk, (t + 1)−2(1+β)

)
∀t ≥ 0, ∀1 ≤ k ≤ K,

Nt,k := n
(
µ̂t, νk, (t + 1)−2(1+β)

)
∀t ≥ 0, ∀1 ≤ k ≤ K,

such that:
it holds P-almost surely that (µ̂t)t≥0 is tight and everyW2-accumulation point of (µ̂t)t≥0 is a
fixed point of G;

in particular, if G has a unique fixed-point, then µ̂t
W2−→ µ̄ P-almost surely as t→∞, where µ̄ is

the Wasserstein barycenter of ν1, . . . , νK.
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Concrete plug-in OT map estimators

Concrete plug-in OT map estimators

Recall: a plug-in OT map estimator approximates Tµ
ν based on m samples X1, . . . ,Xm from µ

and n samples Y1, . . . ,Yn from ν.

We combine the results of Manole, Balakrishnan, Niles-Weed, and Wasserman [2021] and
Taylor [2017] to get a shape-constrained convex least squares based OT map estimator.

Step 1: solve the discrete OT problem: π̂⋆ ∈ argminπ̂∈Π(µ̆m,ν̆n)

{ ∫
Rd×Rd ∥x− y∥2 π̂(dx,dy)

}
,

where µ̆m := 1
m

∑m
i=1 δXi , ν̆n := 1

n

∑n
j=1 δY j are empirical measures.

Step 2: solve the quadratically constrained quadratic programming (QCQP) problem:

minimize
(φ̃i), (g̃i)

m∑
i=1

n∑
j=1

π̂⋆
(
{(Xi,Y j)}

)
∥g̃i + λXi − Y j∥2

subject to φ̃j ≥ φ̃i + ⟨g̃i,Xj − Xi⟩+ 1
2(λ−λ)

∥g̃i − g̃j∥
2 ∀1 ≤ i ≤ m, ∀1 ≤ j ≤ m,

∥g̃i + λXi∥2 ≤ u0(ν)
2 ∀1 ≤ i ≤ m,

where u0(ν) is the radius of supp(ν). Let (φ̃⋆
i )i=1:m, (g̃⋆

i )i=1:m be the optimizer.
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Concrete plug-in OT map estimators

Concrete plug-in OT map estimators

Step 3: for each x ∈ Rd, solve the quadratic programming problem:

∆:=
{

w = (w1, . . . ,wm)
T :

∑m
i=1 wi = 1, wi ≥ 0 ∀1 ≤ i ≤ m

}
⊂ Rm,

G̃⋆:=

( | | |
g̃⋆

1 g̃⋆
2 ··· g̃⋆

m
| | |

)
∈ Rd×m,

vi:= φ⋆
i + 1

2(λ−λ)
∥g⋆

i ∥
2 + λλ

2(λ−λ)
∥Xi∥2 − λ

λ−λ
⟨g⋆

i ,Xi⟩ ∈ R ∀1 ≤ i ≤ m,

v:= (v1, . . . , vm)
T ∈ Rm,

T̂SCCLS(x):= λx + G̃⋆ŵ(x),

where ŵ(x) ∈ argmax
w∈∆

{
⟨G̃⋆Tx + v,w⟩ − 1

2(λ−λ)
∥G̃⋆w∥2

}
∀x ∈ Rd.

T̂SCCLS is uniquely defined and satisfies the growth and consistency conditions.

However, T̂SCCLS does not satisfy the shape condition as it lacks differentiability.
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Concrete plug-in OT map estimators

Smoothing

We apply smoothing techniques to T̂SCCLS to obtain two plug-in OT map estimators.

Kernel smoothing:

T̂kern(x; θ):=
∫
Rd

Ψθ(η)T̂SCCLS(x− η)dη ∀x ∈ Rd,

where Ψθ(η) := (2π)−
d
2 θd exp

(
− θ2∥η∥2/2

)
is the Gaussian kernel with covariance θ−2I.

Softmax smoothing:

T̂smax(x; θ):= λx + G̃⋆ŵ(x; θ),

where ŵ(x; θ) := argmax
w∈∆

{
⟨G̃⋆Tx + v,w⟩ − 1

2(λ−λ)
∥G̃⋆w∥2−η(w)

θ

}
∀x ∈ Rd,

where η(w1, . . . ,wm) := log(m) +
∑m

i=1 wi log(wi).
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Concrete plug-in OT map estimators

Properties of the smoothed plug-in OT map estimators

Theorem (Properties of smoothed plug-in OT map estimators)

Both T̂kern( · ; θ) and T̂smax( · ; θ) satisfy the shape, growth, and consistency conditions.
Specifically:

u1(ν) := 18u0(ν)
2, u2(ν) := 2, n(µ, ν, ϵ) := min

{
n ∈ N : C(µ, ν) log(n)2κ(n) ≤ ϵ

4

}
for both

T̂kern( · ; θ) and T̂smax( · ; θ);

θ(µ, ν, ϵ) :=
⌈( 4d

ϵ

) 1
2 (λ− λ)

⌉
for T̂kern( · ; θ);

θ(µ, ν, ϵ) :=
⌈ 8
ϵ log

(
n(µ, ν, ϵ)

)
(λ− λ)

⌉
for T̂smax( · ; θ),

where C(µ, ν) is a constant in the L2(µ) estimation error bound of Manole et al. [2021], and

κ(n) :=


n− 1

2 d ≤ 3,
n− 1

2 log(n) d = 4,
n− 2

d d ≥ 5
∀n ∈ N.
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Preliminary numerical results

Preliminary numerical results: 2D Gaussian case
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Preliminary numerical results

Preliminary numerical results: 2D Gaussian case
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P. C. Álvarez-Esteban, E. del Barrio, J. Cuesta-Albertos, and C. Matrán. A fixed-point
approach to barycenters in Wasserstein space. Journal of Mathematical Analysis and
Applications, 441(2):744–762, 2016.

T. Manole, S. Balakrishnan, J. Niles-Weed, and L. Wasserman. Plugin estimation of smooth
optimal transport maps. Preprint, arXiv:2107.12364v2, 2021.

A. B. Taylor. Convex interpolation and performance estimation of first-order methods for
convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium,
2017.

Qikun Xiang (NTU, Singapore) EURO 2024 Copenhagen July 2, 2024 22 / 22


	Optimal transport and Wasserstein barycenter
	Stochastic fixed-point algorithm for Wasserstein barycenter
	Concrete plug-in OT map estimators
	Preliminary numerical results
	References

