Provably convergent algorithm for free-support Wasserstein barycenter of continuous non-parametric measures

Qikun Xiang

Nanyang Technological University, Singapore

July 2, 2024

Joint work with:

Zeyi Chen (Nanyang Technological University & INSEAD) Ariel Neufeld (Nanyang Technological University)

Outline

1 Optimal transport and Wasserstein barycenter

2 Stochastic fixed-point algorithm for Wasserstein barycenter

3 Concrete plug-in OT map estimators

4 Preliminary numerical results

Optimal transport

- Motivation: given two probability measures μ, ν ∈ P₂(ℝ^d), determine the most economical way of transporting the mass from μ to ν under the cost ℝ^d × ℝ^d ∋ (x, y) ↦ ||x y||² ∈ ℝ.
- Monge's problem:

$$\inf_{T:\mathbb{R}^d\to\mathbb{R}^d,\,T\not\equiv\mu=\nu}\bigg\{\int_{\mathbb{R}^d}\big\|\boldsymbol{x}-T(\boldsymbol{x})\big\|^2\,\mu(\mathrm{d}\boldsymbol{x})\bigg\}.$$
(MP)

• Kantorovich's (relaxed) problem:

$$\inf_{\pi \in \Pi(\mu,\nu)} \bigg\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} \| \boldsymbol{x} - \boldsymbol{y} \|^2 \, \pi(\mathrm{d}\boldsymbol{x}, \mathrm{d}\boldsymbol{y}) \bigg\},\tag{KP}$$

where $\Pi(\mu,\nu) := \{\pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \pi \text{ has marginals } \mu \text{ and } \nu\}$ denotes the set of couplings.

 While (MP) can be infeasible as it does not allow mass to be split, (KP) is always feasible and an optimal coupling is always attained.

Properties of optimal transport

• For continuous $\mu \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$, (KP) and (MP) are related via **Brenier's theorem**.

Theorem (Brenier [1991])

Let $\mu \in \mathcal{P}_{2,\mathrm{ac}}(\mathbb{R}^d)$. Then, there exists a unique optimal coupling π^* for (KP). Moreover, there exists a convex lower semi-continuous $\varphi^{\mu}_{\nu} : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ such that $T^{\mu}_{\nu} := \nabla \varphi^{\mu}_{\nu}$ solves (MP) and $\pi^* = [I_d, T^{\mu}_{\nu}] \sharp \mu$.

- We call φ^{μ}_{ν} the optimal Brenier potential and call T^{μ}_{ν} the optimal transport (OT) map.
- Caffarelli's regularity theory provides sufficient conditions for the regularity of φ^μ_ν.

Theorem (Caffarelli [1990, 1991, 1992, 1996])

Let $\mu, \nu \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ be concentrated on bounded open sets $\mathcal{X}_{\mu}, \mathcal{X}_{\nu}$ that are uniformly convex and have \mathcal{C}^2 boundaries. If the density of μ (resp. ν) are positive on \mathcal{X}_{μ} (resp. \mathcal{X}_{ν}) and belong to $\mathcal{C}^{k,\alpha}(\mathcal{X}_{\mu})$ (resp. $\mathcal{C}^{k,\alpha}(\mathcal{X}_{\nu})$), i.e., k times differentiable with α -Hölder partial derivatives, then it holds that $\varphi_{\nu}^{\mu} \in \mathcal{C}^{k+2,\alpha}(\mathcal{X}_{\mu})$.

Wasserstein distance and Wasserstein barycenter

• The 2-Wasserstein distance between $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ is defined as

$$\mathcal{W}_2(\mu,
u):=\left\{\inf_{\pi\in\Pi(\mu,
u)}\int_{\mathbb{R}^d imes\mathbb{R}^d}\|m{x}-m{y}\|^2\,\pi(\mathrm{d}m{x},\mathrm{d}m{y})
ight\}^rac{1}{2}.$$

- $W_2(\cdot, \cdot)$ metrizes weak convergence in $\mathcal{P}_2(\mathbb{R}^d)$.
- Given $\nu_1, \ldots, \nu_K \in \mathcal{P}_2(\mathbb{R}^d)$, let $V(\mu) := \frac{1}{K} \sum_{k=1}^K W_2(\mu, \nu_k)^2$. Then, $\bar{\mu} \in \mathcal{P}_2(\mathbb{R}^d)$ is called a Wasserstein barycenter of ν_1, \ldots, ν_K [Agueh and Carlier 2011] if

 $ar{\mu} \in rgmin_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} V(\mu).$

Literature review

• Applications of Wasserstein barycenter: Bayesian statistics (e.g., Srivastava, Li, Dunson [2018]), unsupervised clustering (e.g., Ye et al. [2017]), pattern recognition (e.g., Tabak, Trigila, Zhao [2022]), etc.

• Existing numerical methods for Wasserstein barycenter:

- **Parametric Wasserstein barycenter:** applicable when ν_1, \ldots, ν_K are certain parametric measures (e.g., Gaussian); see, e.g., Álvarez-Esteban et al. [2016], Chewi et al. [2020].
- **Discrete Wasserstein barycenter:** applicable when ν_1, \ldots, ν_K are discrete measures; see, e.g., Cuturi and Doucet [2014], Benamou et al. [2015], and Anderes, Borgwardt, Miller [2016].
- Fixed-support methods: restrict the support of the Wasserstein barycenter to a prespecified finite set and optimize over a finite number of probabilities; see, e.g., Staib et al. [2017], Claici, Chien, Solomon [2018], Dvurechenskii et al. [2018].
- Neural network-based methods: parametrize φ^μ_μ and/or μ with neural networks and optimize over neural network parameters; see, e.g., Fan, Taghvaei, Chen[2020], Li et al. [2020], Korotin et al. [2021].
- Our contribution: we propose a provably convergent algorithm for approximating the free-support Wasserstein barycenter of non-parametric continuous measures.

Optimal transport and Wasserstein barycenter

Stochastic fixed-point algorithm for Wasserstein barycenter

3 Concrete plug-in OT map estimators

4 Preliminary numerical results

Preliminaries

• Álvarez-Esteban, del Barrio, Cuesta-Albertos, and Matrán [2016] have shown that the Wasserstein barycenter $\bar{\mu}$ is a fixed-point of $G(\mu) := \left[\frac{1}{K} \sum_{k=1}^{K} T^{\mu}_{\nu_{k}}\right] \sharp \mu$, i.e., $G(\bar{\mu}) = \bar{\mu}$.

Algorithm: Deterministic fixed-point scheme

Input: *K* input measures $\nu_1, \ldots, \nu_K \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$, initial measure $\mu_0 \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$. Output: $(\mu_t)_{t \in \mathbb{N}_0}$. 1 for $t = 0, 1, 2, \ldots$ do 2 for $k = 1, \ldots, K$ do 3 $\left| \begin{array}{c} \text{Get the OT map } T^{\mu_t}_{\nu_k} \\ \mu_{t+1} \leftarrow \begin{bmatrix} 1 \\ K \\ \sum_{k=1}^{K} T^{\mu_t}_{\nu_k} \end{bmatrix} \sharp \mu_t. \end{array} \right|$

Theorem (Corollary 3.5 & Theorem 3.6 of Álvarez-Esteban et al. [2016])

 $(\mu_t)_{t\geq 0}$ is tight and every \mathcal{W}_2 -accumulation point of $(\mu_t)_{t\geq 0}$ is a fixed-point of *G*. In particular, if *G* has a unique fixed-point, then $\mu_t \xrightarrow{\mathcal{W}_2} \bar{\mu}$ as $t \to \infty$.

However, for general non-parametric ν_k, the computation of T^{μ_i}_{ν_k} is intractable, and thus the deterministic fixed-point scheme does not lead to a computationally tractable algorithm.

Conceptual approach

Conceptual approach: we estimate T^{μ_t}_{ν_k} using samples from μ_t and ν_k and extend this scheme to a stochastic fixed-point algorithm.

Algorithm: Stochastic fixed-point algorithm (conceptual)

Input: *K* input measures $\nu_1, \ldots, \nu_K \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$, initial measure $\mu_0 \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$. Output: $(\hat{\mu}_t)_{t \in \mathbb{N}_0}$. 1 Initialize $\hat{\mu}_0 \leftarrow \mu_0$. 2 for $t = 0, 1, 2, \ldots$ do 3 for $k = 1, \ldots, K$ do 4 Randomly generate $N_{t,k}$ i.i.d. samples $\{X_{t+1,k,i}\}_{i=1:N_{t,k}}$ from $\hat{\mu}_t$. 5 Randomly generate $N_{t,k}$ i.i.d. samples $\{Y_{t+1,k,i}\}_{i=1:N_{t,k}}$ from ν_k . 6 Approximate $T^{\hat{\mu}_t}_{\nu_k}$ with an estimator $\hat{T}_{t+1,k} \approx T^{\hat{\mu}_t}_{\nu_k}$ using the samples $\{X_{t+1,k,i}\}_{i=1:N_{t,k}}$. 7 Choose $\hat{\mu}_{t+1} \in \mathcal{P}_{2,ac}(\mathbb{R}^d)$ such that $\hat{\mu}_{t+1} \approx [\frac{1}{K} \sum_{k=1}^{K} \hat{T}_{t+1,k}] \sharp \hat{\mu}_t$. • Admissible support sets:

 $\mathcal{S} := \big\{ cl(\mathcal{Y}) : \mathcal{Y} \subset \mathbb{R}^d \text{ is open, bounded, uniformly convex, and has a } \mathcal{C}^2 \text{-boundary} \big\}.$

• Admissible fully supported probability measures:

 $\mathcal{M}_{\text{full}} := \left\{ \rho \in \mathcal{P}_{2,\text{ac}}(\mathbb{R}^d) : \text{supp}(\rho) = \mathbb{R}^d, \text{ the density of } \rho \text{ is locally } \alpha \text{-H\"older and positive} \right\}.$

• Admissible compactly supported probability measures:

 $\mathcal{M} := \left\{ \mu \in \mathcal{P}_{2,\mathrm{ac}}(\mathbb{R}^d) : \mathrm{supp}(\mu) \in \mathcal{S}, \text{ the density of } \mu \text{ is } \alpha\text{-H\"older and positive on } \mathrm{supp}(\mu) \right\}.$

- In particular, $\rho|_{\mathcal{X}}(\cdot) := \frac{\rho(\cdot \cap \mathcal{X})}{\rho(\mathcal{X})} \in \mathcal{M}$ for any $\rho \in \mathcal{M}_{\text{full}}$ and any $\mathcal{X} \in \mathcal{S}$.
- For any $\mu, \nu \in \mathcal{M}$, the regularity properties of φ^{μ}_{ν} is implied by Caffarelli's regularity theory.

Settings

- Family $(\mathcal{X}_r)_{r \in \mathbb{N}}$ of increasing admissible support sets used for adjusting the support of $(\widehat{\mu}_t)_{t \geq 0}$: $\mathcal{X}_r \in \mathcal{S}, \ \mathcal{X}_{r+1} \supseteq \mathcal{X}_r \ \forall r \in \mathbb{N}, \ \bigcup_{r \in \mathbb{N}} \mathcal{X}_r = \mathbb{R}^d$; e.g., the family of scaled unit balls.
- Plug-in OT map estimator T^{μ,m}_{ν,n}(·; θ) estimates T^μ_ν based on *m* samples from μ and *n* samples from ν with smoothing parameter θ, subject to:
 - Shape condition: Î^{μ,m}_{ν,n}(·;θ) = ∇φ^{μ,m}_{ν,n}(·;θ), φ^{μ,m}_{ν,n}(·;θ) ∈ C^{2,α}(ℝ^d) is λ̄-smooth, <u>λ</u>-strongly convex (preserves the regularity of μ̂_t);
 - Growth condition: $\mathbb{E}\left[\left\|\widehat{T}_{\nu,n}^{\mu,m}(\boldsymbol{x};\theta)\right\|^{2}\right] \leq u_{1}(\nu) + u_{2}(\nu)\|\boldsymbol{x}\|^{2} \,\forall \boldsymbol{x} \in \mathbb{R}^{d}$ where $u_{1}(\nu), u_{2}(\nu)$ depend on ν (controls the approximation error of $\widehat{\mu}_{t+1} \approx \left[\frac{1}{K}\sum_{k=1}^{K}\widehat{T}_{t+1,k}\right]\sharp\widehat{\mu}_{t}$);
 - Consistency condition: for all $\epsilon > 0$, there exist $\overline{\theta}(\mu, \nu, \epsilon)$ and $\overline{n}(\mu, \nu, \epsilon)$ depending on μ, ν, ϵ , such that $\mathbb{E}\left[\left\|\widehat{T}_{\nu,n}^{\mu,m}(\cdot;\theta) T_{\nu}^{\mu}\right\|_{\mathcal{L}^{2}(\mu)}^{2}\right] \leq \epsilon \quad \forall \theta \geq \overline{\theta}(\mu, \nu, \epsilon), \forall m \geq \overline{n}(\mu, \nu, \epsilon), \forall n \geq \overline{n}(\mu, \nu, \epsilon) \text{ (controls the estimation error of } \widehat{T}_{t+1,k} \approx T_{\nu_{k}}^{\widehat{\mu}_{t}}).$

Concrete fixed-point algorithm

```
Algorithm: Stochastic fixed-point algorithm (concrete)
     Input: K input measures \nu_1, \ldots, \nu_K \in \mathcal{M}, \rho_0 \in \mathcal{M}_{full}, family (\mathcal{X}_r)_{r \in \mathbb{N}} of increasing sets,
                   plug-in OT map estimator \widehat{T}_{\mu,n}^{\mu,m}(\cdot;\theta).
     Output: (\widehat{\mu}_t)_{t \in \mathbb{N}_0}.
     Initialize \hat{\rho}_0 \leftarrow \rho_0.
 2 for t = 0, 1, 2, \dots do
            Choose R_t \in \mathbb{N}.
 3
           \widehat{\mu}_t \leftarrow \widehat{\rho}_t |_{\mathcal{X}_{\mathcal{P}}}
 4
            for k = 1, ..., K do
 5
                   Choose \Theta_{t,k} \in \mathbb{N} and N_{t,k} \in \mathbb{N}.
 6
                   Randomly generate N_{t,k} i.i.d. samples \{X_{t+1,k,i}\}_{i=1:N_{t,k}} from \hat{\mu}_t.
 7
                   Randomly generate N_{t,k} i.i.d. samples \{Y_{t+1,k,i}\}_{i=1:N_{t,k}} from \nu_k.
 8
                \widehat{T}_{t+1,k} \leftarrow \widehat{T}_{\nu,n}^{\mu,m}(\cdot;\theta) \big|_{\mu = \widehat{\mu}_{t}, \nu = \nu_{k}, \theta = \Theta_{t,k}, m = n = N_{t,k}}.
 9
           \widehat{\rho}_{t+1} \leftarrow \left[\frac{1}{K} \sum_{k=1}^{K} \widehat{T}_{t+1,k}\right] \ddagger \widehat{\rho}_t.
10
```

Convergence analysis

Theorem (Convergence of the stochastic fixed-point algorithm)

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \ge 0})$ be the filtered probability space induced by the stochastic fixed-point algorithm where \mathcal{F}_t is the σ -algebra generated by all samples up to iteration t. Let $\beta > 0$. Then, one can explicitly construct $(\mathcal{F}_t)_{t \ge 0}$ -adapted stochastic processes $(R_t)_{t \ge 0}, (\Theta_{t,k})_{t \ge 0, k=1:K}$, and $(N_{t,k})_{t \ge 0, k=1:K}$:

$$\begin{split} R_{0} &:= \bar{r}_{2}(\widehat{\rho}_{0}, \nu_{1}, \dots, \nu_{K}, 1), \\ R_{t} &:= \max\left\{ \bar{r}_{1}(\widehat{\rho}_{t}, t^{-(1+\beta)}), \bar{r}_{2}(\widehat{\rho}_{t}, \nu_{1}, \dots, \nu_{K}, (t+1)^{-2(1+\beta)}) \right\} & \forall t \geq 1, \\ \Theta_{t,k} &:= \bar{\theta}(\widehat{\mu}_{t}, \nu_{k}, (t+1)^{-2(1+\beta)}) & \forall t \geq 0, \ \forall 1 \leq k \leq K, \\ N_{t,k} &:= \bar{n}(\widehat{\mu}_{t}, \nu_{k}, (t+1)^{-2(1+\beta)}) & \forall t \geq 0, \ \forall 1 \leq k \leq K, \end{split}$$

such that:

- it holds P-almost surely that (µ
 t){t≥0} is tight and every W₂-accumulation point of (µ
 t){t≥0} is a fixed point of G;
- in particular, if G has a unique fixed-point, then μ̂_t → μ̃ ℙ-almost surely as t → ∞, where μ̄ is the Wasserstein barycenter of ν₁,..., ν_K.

Outline

Optimal transport and Wasserstein barycenter

2 Stochastic fixed-point algorithm for Wasserstein barycenter

3 Concrete plug-in OT map estimators

4 Preliminary numerical results

Concrete plug-in OT map estimators

Concrete plug-in OT map estimators

- Recall: a plug-in OT map estimator approximates T^μ_ν based on m samples X₁,..., X_m from μ and n samples Y₁,..., Y_n from ν.
- We combine the results of Manole, Balakrishnan, Niles-Weed, and Wasserman [2021] and Taylor [2017] to get a shape-constrained convex least squares based OT map estimator.
- Step 1: solve the discrete OT problem: $\widehat{\pi}^{\star} \in \arg \min_{\widehat{\pi} \in \Pi(\check{\mu}_m, \check{\nu}_n)} \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x y\|^2 \widehat{\pi}(\mathrm{d}x, \mathrm{d}y) \right\}$, where $\check{\mu}_m := \frac{1}{m} \sum_{i=1}^m \delta_{X_i}$, $\check{\nu}_n := \frac{1}{n} \sum_{j=1}^n \delta_{Y_j}$ are empirical measures.
- Step 2: solve the quadratically constrained quadratic programming (QCQP) problem:

$$\begin{split} \underset{(\widetilde{\varphi}_i),\,(\widetilde{g}_i)}{\text{minimize}} & \sum_{i=1}^m \sum_{j=1}^n \widehat{\pi}^\star \big(\{(X_i,Y_j)\}\big) \|\widetilde{g}_i + \underline{\lambda} X_i - Y_j\|^2 \\ \text{subject to} & \widetilde{\varphi}_j \geq \widetilde{\varphi}_i + \langle \widetilde{g}_i, X_j - X_i \rangle + \frac{1}{2(\overline{\lambda} - \underline{\lambda})} \|\widetilde{g}_i - \widetilde{g}_j\|^2 & \forall 1 \leq i \leq m, \, \forall 1 \leq j \leq m, \\ & \|\widetilde{g}_i + \underline{\lambda} X_i\|^2 \leq \overline{u}_0(\nu)^2 & \forall 1 \leq i \leq m, \end{split}$$

where $\overline{u}_0(\nu)$ is the radius of supp (ν) . Let $(\widetilde{\varphi}_i^{\star})_{i=1:m}$, $(\widetilde{g}_i^{\star})_{i=1:m}$ be the optimizer.

Concrete plug-in OT map estimators

• Step 3: for each $x \in \mathbb{R}^d$, solve the quadratic programming problem:

Concrete plug-in OT map estimators

$$\begin{split} \Delta &:= \left\{ \boldsymbol{w} = (\boldsymbol{w}_1, \dots, \boldsymbol{w}_m)^{\mathsf{T}} : \sum_{i=1}^m \boldsymbol{w}_i = 1, \ \boldsymbol{w}_i \ge 0 \ \forall 1 \le i \le m \right\} \subset \mathbb{R}^m, \\ \widetilde{\mathbf{G}}^\star &:= \begin{pmatrix} \begin{vmatrix} i & j & i \\ \tilde{\mathbf{g}}_1^\star & \tilde{\mathbf{g}}_2^\star & \cdots & \tilde{\mathbf{g}}_m^\star \\ | & | & | \end{pmatrix} \in \mathbb{R}^{d \times m}, \\ \boldsymbol{v}_i &:= \varphi_i^\star + \frac{1}{2(\overline{\lambda} - \underline{\lambda})} \| \boldsymbol{g}_i^\star \|^2 + \frac{\underline{\lambda} \overline{\lambda}}{2(\overline{\lambda} - \underline{\lambda})} \| \boldsymbol{X}_i \|^2 - \frac{\overline{\lambda}}{\overline{\lambda} - \underline{\lambda}} \langle \boldsymbol{g}_i^\star, \boldsymbol{X}_i \rangle \in \mathbb{R} \qquad \forall 1 \le i \le m, \\ \boldsymbol{v} &:= (v_1, \dots, v_m)^{\mathsf{T}} \in \mathbb{R}^m, \\ \widehat{T}_{\mathrm{SCCLS}}(\boldsymbol{x}) &:= \underline{\lambda} \boldsymbol{x} + \widetilde{\mathbf{G}}^\star \widehat{\boldsymbol{w}}(\boldsymbol{x}), \\ \mathrm{where} \ \widehat{\boldsymbol{w}}(\boldsymbol{x}) \in \operatorname*{arg\,max}_{\boldsymbol{w} \in \Delta} \Big\{ \langle \widetilde{\mathbf{G}}^{\star \mathsf{T}} \boldsymbol{x} + \boldsymbol{v}, \boldsymbol{w} \rangle - \frac{1}{2(\overline{\lambda} - \underline{\lambda})} \| \widetilde{\mathbf{G}}^\star \boldsymbol{w} \|^2 \Big\} \qquad \forall \boldsymbol{x} \in \mathbb{R}^d. \end{split}$$

• \hat{T}_{SCCLS} is uniquely defined and satisfies the growth and consistency conditions.

• However, \hat{T}_{SCCLS} does not satisfy the **shape condition** as it lacks differentiability.

Smoothing

- We apply smoothing techniques to \hat{T}_{SCCLS} to obtain two plug-in OT map estimators.
- Kernel smoothing:

$$\widehat{T}_{\mathrm{kern}}(\boldsymbol{x}; \theta) := \int_{\mathbb{R}^d} \Psi_{\theta}(\boldsymbol{\eta}) \widehat{T}_{\mathrm{SCCLS}}(\boldsymbol{x} - \boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta} \qquad \forall \boldsymbol{x} \in \mathbb{R}^d,$$

where $\Psi_{\theta}(\eta) := (2\pi)^{-\frac{d}{2}} \theta^d \exp\left(-\theta^2 \|\eta\|^2/2\right)$ is the Gaussian kernel with covariance $\theta^{-2}\mathbf{I}$.

Softmax smoothing:

$$\begin{split} \widehat{T}_{\mathrm{smax}}(\boldsymbol{x};\boldsymbol{\theta}) &:= \underline{\lambda} \boldsymbol{x} + \widetilde{\mathbf{G}}^{\star} \widehat{\boldsymbol{w}}(\boldsymbol{x};\boldsymbol{\theta}), \\ \text{where } \widehat{\boldsymbol{w}}(\boldsymbol{x};\boldsymbol{\theta}) &:= \operatorname*{arg\,max}_{\boldsymbol{w} \in \Delta} \left\{ \langle \widetilde{\mathbf{G}}^{\star \mathsf{T}} \boldsymbol{x} + \boldsymbol{v}, \boldsymbol{w} \rangle - \frac{1}{2(\overline{\lambda} - \underline{\lambda})} \| \widetilde{\mathbf{G}}^{\star} \boldsymbol{w} \|^{2} - \frac{\eta(\boldsymbol{w})}{\boldsymbol{\theta}} \right\} \qquad \forall \boldsymbol{x} \in \mathbb{R}^{d}, \end{split}$$

where $\eta(w_1, ..., w_m) := \log(m) + \sum_{i=1}^m w_i \log(w_i)$.

Properties of the smoothed plug-in OT map estimators

Theorem (Properties of smoothed plug-in OT map estimators)

Both $\widehat{T}_{kern}(\cdot; \theta)$ and $\widehat{T}_{smax}(\cdot; \theta)$ satisfy the shape, growth, and consistency conditions. Specifically:

• $u_1(\nu) := 18\overline{u}_0(\nu)^2$, $u_2(\nu) := 2$, $\overline{n}(\mu, \nu, \epsilon) := \min\left\{n \in \mathbb{N} : C(\mu, \nu)\log(n)^2\kappa(n) \le \frac{\epsilon}{4}\right\}$ for both $\widehat{T}_{kern}(\cdot; \theta)$ and $\widehat{T}_{smax}(\cdot; \theta)$;

•
$$\overline{\theta}(\mu,\nu,\epsilon) := \left\lceil \left(\frac{4d}{\epsilon}\right)^{\frac{1}{2}} (\overline{\lambda} - \underline{\lambda}) \right\rceil$$
 for $\widehat{T}_{\text{kern}}(\,\cdot\,;\theta)$;

• $\overline{\theta}(\mu,\nu,\epsilon) := \left\lceil \frac{8}{\epsilon} \log\left(\overline{n}(\mu,\nu,\epsilon)\right) (\overline{\lambda}-\underline{\lambda}) \right\rceil$ for $\widehat{T}_{\mathrm{smax}}(\,\cdot\,;\theta)$,

where $C(\mu, \nu)$ is a constant in the $\mathcal{L}^2(\mu)$ estimation error bound of Manole et al. [2021], and

$$\kappa(n) := \begin{cases} n^{-\frac{1}{2}} & d \le 3, \\ n^{-\frac{1}{2}} \log(n) & d = 4, \\ n^{-\frac{2}{d}} & d \ge 5 \end{cases} \quad \forall n \in \mathbb{N}.$$

Outline

Optimal transport and Wasserstein barycenter

2 Stochastic fixed-point algorithm for Wasserstein barycenter

3 Concrete plug-in OT map estimators

Preliminary numerical results

Preliminary numerical results: 2D Gaussian case

Qikun Xiang (NTU, Singapore)

July 2, 2024

Preliminary numerical results

Preliminary numerical results: 2D Gaussian case

- M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 43(2):904–924, 2011.
- P. C. Álvarez-Esteban, E. del Barrio, J. Cuesta-Albertos, and C. Matrán. A fixed-point approach to barycenters in Wasserstein space. *Journal of Mathematical Analysis and Applications*, 441(2):744–762, 2016.
- T. Manole, S. Balakrishnan, J. Niles-Weed, and L. Wasserman. Plugin estimation of smooth optimal transport maps. *Preprint, arXiv:2107.12364v2*, 2021.
- A. B. Taylor. Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017.