Provably convergent algorithm for free-support Wasserstein barycenter of continuous non-parametric measures

Qikun Xiang

Nanyang Technological University, Singapore

July 2, 2024

Joint work with:

Zeyi Chen (Nanyang Technological University & INSEAD) Ariel Neufeld (Nanyang Technological University)

Outline

¹ [Optimal transport and Wasserstein barycenter](#page-1-0)

² [Stochastic fixed-point algorithm for Wasserstein barycenter](#page-6-0)

³ [Concrete plug-in OT map estimators](#page-13-0)

⁴ [Preliminary numerical results](#page-18-0)

Optimal transport

- **Motivation:** given two probability measures $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, determine the most economical way of transporting the mass from μ to ν under the cost $\R^d\times\R^d\ni(x,y)\mapsto \|x-y\|^2\in\R.$
- **Monge's problem:**

$$
\inf_{T:\mathbb{R}^d\to\mathbb{R}^d,\,T\sharp\mu=\nu}\bigg\{\int_{\mathbb{R}^d}\big\|x-T(x)\big\|^2\,\mu(\mathrm{d} x)\bigg\}.\tag{MP}
$$

Kantorovich's (relaxed) problem:

$$
\inf_{\pi \in \Pi(\mu,\nu)} \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} ||x - y||^2 \, \pi(\mathrm{d}x, \mathrm{d}y) \right\},\tag{\textsf{KP}}
$$

where $\Pi(\mu, \nu) := \{ \pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \pi \text{ has marginals } \mu \text{ and } \nu \}$ denotes the set of couplings.

While (MP) can be infeasible as it does not allow mass to be split, (KP) is always feasible and an optimal coupling is always attained.

Properties of optimal transport

For continuous $\mu \in \mathcal{P}_{2,\text{ac}}(\mathbb{R}^d)$, (KP) and (MP) are related via **Brenier's theorem**.

Theorem (Brenier [1991])

Let $\mu \in \mathcal{P}_{2,\text{ac}}(\mathbb{R}^d)$. Then, there exists a unique optimal coupling π^* for (KP). *Moreover, there exists a convex lower semi-continuous* $\varphi^{\mu}_{\nu}:\mathbb{R}^d\to\mathbb{R}\cup\{\infty\}$ such that $T^{\mu}_{\nu} := \nabla \varphi^{\mu}_{\nu}$ solves (MP) and $\pi^{\star} = [I_d, T^{\mu}_{\nu}] \sharp \mu$.

- We call φ^{μ}_{ν} the optimal Brenier potential and call T^{μ}_{ν} the optimal transport (OT) map.
- **Caffarelli's regularity theory** provides sufficient conditions for the regularity of φ^{μ}_{ν} .

Theorem (Caffarelli [1990, 1991, 1992, 1996])

Let $\mu, \nu \in \mathcal{P}_{2,\text{ac}}(\mathbb{R}^d)$ be concentrated on bounded open sets $\mathcal{X}_\mu, \mathcal{X}_\nu$ that are uniformly *convex and have* C^2 *boundaries. If the density of* μ *(resp.* ν *) are positive on* \mathcal{X}_{μ} *(resp.* (\mathcal{X}_ν) and belong to $\mathcal{C}^{k,\alpha}(\mathcal{X}_\mu)$ (resp. $\mathcal{C}^{k,\alpha}(\mathcal{X}_\nu)$), i.e., k times differentiable with α -Hölder partial derivatives, then it holds that $\varphi_{\nu}^{\mu} \in \mathcal{C}^{k+2,\alpha}(\mathcal{X}_{\mu}).$

Wasserstein distance and Wasserstein barycenter

The 2-Wasserstein distance between $\mu,\nu\in \mathcal{P}_2(\mathbb{R}^d)$ is defined as

$$
\mathcal{W}_2(\mu,\nu):=\bigg\{\inf_{\pi\in\Pi(\mu,\nu)}\int_{\mathbb{R}^d\times\mathbb{R}^d}\|x-y\|^2\,\pi(\mathrm{d} x,\mathrm{d} y)\bigg\}^{\frac{1}{2}}.
$$

- $\mathcal{W}_2(\cdot,\cdot)$ metrizes weak convergence in $\mathcal{P}_2(\mathbb{R}^d)$.
- Given $\nu_1, \ldots, \nu_K \in \mathcal{P}_2(\mathbb{R}^d)$, let $V(\mu) := \frac{1}{K} \sum_{k=1}^K \mathcal{W}_2(\mu, \nu_k)^2$. Then, $\bar{\mu} \in \mathcal{P}_2(\mathbb{R}^d)$ is called a Wasserstein barycenter of ν_1, \ldots, ν_k [Agueh and Carlier 2011] if

 $\bar{\mu} \in \arg \min V(\mu).$ $\mu \in \mathcal{P}_2(\mathbb{R}^d)$

Literature review

Applications of Wasserstein barycenter: Bayesian statistics (e.g., Srivastava, Li, Dunson [2018]), unsupervised clustering (e.g., Ye et al. [2017]), pattern recognition (e.g., Tabak, Trigila, Zhao [2022]), etc.

Existing numerical methods for Wasserstein barycenter:

- **Parametric Wasserstein barycenter:** applicable when $ν_1, \ldots, \nu_k$ are certain parametric measures (e.g., Gaussian); see, e.g., Alvarez-Esteban et al. [2016], Chewi et al. [2020]. ´
- **Discrete Wasserstein barycenter:** applicable when ν_1, \ldots, ν_K are discrete measures; see, e.g., Cuturi and Doucet [2014], Benamou et al. [2015], and Anderes, Borgwardt, Miller [2016].
- **Fixed-support methods:** restrict the support of the Wasserstein barycenter to a prespecified finite set and optimize over a finite number of probabilities; see, e.g., Staib et al. [2017], Claici, Chien, Solomon [2018], Dvurechenskii et al. [2018].
- **Neural network-based methods:** parametrize φ^{μ}_{ν} and/or $\bar{\mu}$ with neural networks and optimize over neural network parameters; see,e.g.,Fan,Taghvaei,Chen[2020],Li et al. [2020],Korotin et al. [2021].
- **Our contribution:** we propose a **provably convergent** algorithm for approximating the **free-support** Wasserstein barycenter of **non-parametric continuous** measures.

¹ [Optimal transport and Wasserstein barycenter](#page-1-0)

² [Stochastic fixed-point algorithm for Wasserstein barycenter](#page-6-0)

³ [Concrete plug-in OT map estimators](#page-13-0)

⁴ [Preliminary numerical results](#page-18-0)

Preliminaries

 \bullet Álvarez-Esteban, del Barrio, Cuesta-Albertos, and Matrán [2016] have shown that the Wasserstein barycenter $\bar{\mu}$ is a fixed-point of $G(\mu) := \left[\frac{1}{K}\sum_{k=1}^K T_{\nu_k}^\mu\right]\sharp\mu$, i.e., $G(\bar{\mu}) = \bar{\mu}$.

Algorithm: Deterministic fixed-point scheme

Input: *K* input measures $\nu_1,\ldots,\nu_K\in\mathcal{P}_{2,\mathrm{ac}}(\mathbb{R}^d)$, initial measure $\mu_0\in\mathcal{P}_{2,\mathrm{ac}}(\mathbb{R}^d)$. Output: $(\mu_t)_{t \in \mathbb{N}_0}$. **for** $t = 0, 1, 2, ...$ **do for** $k = 1, ..., K$ **do** $\left| \begin{array}{c} \rule{0pt}{17pt} \rule{0pt}{2.5pt} \rule{0pt}{2.5$ $\left[\mu_{t+1} \leftarrow \left[\frac{1}{K} \sum_{k=1}^{K} T^{\mu_t}_{\nu_k} \right] \sharp \mu_t. \right]$

Theorem (Corollary 3.5 & Theorem 3.6 of Alvarez-Esteban et al. [2016]) ´

 $(\mu_t)_{t>0}$ *is tight and every* \mathcal{W}_2 -accumulation point of $(\mu_t)_{t>0}$ *is a fixed-point of G*. *In particular, if G has a unique fixed-point, then* $\mu_t \stackrel{\mathcal{W}_2}{\longrightarrow} \bar{\mu}$ *as* $t \to \infty$ *.*

However, for general non-parametric ν_k , the computation of $T^{\mu_t}_{\nu_k}$ is intractable, and thus the deterministic fixed-point scheme **does not lead to a computationally tractable algorithm**.

Conceptual approach

Conceptual approach: we estimate $T^{\mu_t}_{\nu_k}$ using samples from μ_t and ν_k and extend this scheme to a **stochastic fixed-point algorithm**.

Algorithm: Stochastic fixed-point algorithm **(conceptual)**

```
Input: K input measures \nu_1,\ldots,\nu_K\in\mathcal{P}_{2,\mathrm{ac}}(\mathbb{R}^d), initial measure \mu_0\in\mathcal{P}_{2,\mathrm{ac}}(\mathbb{R}^d).Output: (\widehat{\mu}_t)_{t \in \mathbb{N}_0}.<br>Initialize \widehat{u}_0 \leftarrow u_01 Initialize \hat{\mu}_0 \leftarrow \mu_0.
2 for t = 0, 1, 2, ... do
3 for k = 1, ..., K do
 4 Randomly generate N_{t,k} i.i.d. samples \{X_{t+1,k,j}\}_{i=1:N_{t,k}} from \hat{\mu}_t.<br>
Rendomly generate N_{t+1} i.i.d. samples \{Y_{t+1,k,j}\}_{k=1:N_{t,k}} from \mu_t.
 \mathsf{p} = \left| \quad \right| Randomly generate N_{t,k} i.i.d. samples \{ \boldsymbol{Y}_{t+1,k,i} \}_{i=1:N_{t,k}} from \nu_k.6 \left| \quad \right| Approximate T_{\nu_k}^{\widehat{\mu}_t} with an estimator T_{t+1,k} \approx T_{\nu_k}^{\widehat{\mu}_t} using the samples \{X_{t+1,k,i}\}_{i=1:N_{t,k}}and \{ \boldsymbol{Y}_{t+1,k,i} \}_{i=1:N_{t,k}}.
 7 \left[ \int \text{Choose } \hat{\mu}_{t+1} \in \mathcal{P}_{2,\text{ac}}(\mathbb{R}^d) \text{ such that } \hat{\mu}_{t+1} \approx \left[ \frac{1}{K} \sum_{k=1}^K \widehat{T}_{t+1,k} \right] \sharp \widehat{\mu}_t. \right]
```
Admissible support sets:

 $\mathcal{S}:=\{\mathrm{cl}(\mathcal{Y}):\mathcal{Y}\subset\mathbb{R}^d\ \text{is open, bounded, uniformly convex, and has a\ \mathcal{C}^2\text{-boundary}\}.$

Admissible fully supported probability measures:

 $\mathcal{M}_{\text{full}} := \left\{ \rho \in \mathcal{P}_{2,\text{ac}}(\mathbb{R}^d) : \text{supp}(\rho) = \mathbb{R}^d, \text{ the density of }\rho \text{ is locally α-H\"older and positive} \right\}.$

Admissible compactly supported probability measures:

 $\mathcal{M}:=\left\{\mu\in \mathcal{P}_{2,\rm ac}(\mathbb{R}^d):\text{supp}(\mu)\in \mathcal{S}, \text{ the density of }\mu \text{ is }\alpha\text{-H\"older and positive on } \text{supp}(\mu) \right\}.$

- In particular, $\rho|_{\mathcal{X}}(\cdot) := \frac{\rho(\cdot \cap \mathcal{X})}{\rho(\mathcal{X})} \in \mathcal{M}$ for any $\rho \in \mathcal{M}_{\text{full}}$ and any $\mathcal{X} \in \mathcal{S}$.
- For any $\mu, \nu \in \mathcal{M}$, the regularity properties of φ^{μ}_{ν} is implied by Caffarelli's regularity theory.

Settings

- \bullet Family $(\mathcal{X}_r)_{r\in\mathbb{N}}$ of increasing admissible support sets used for adjusting the support of $(\hat{\mu}_t)_{t\geq 0}$: $\mathcal{X}_r\in\mathcal{S},\, \mathcal{X}_{r+1}\supseteq\mathcal{X}_r\;\forall r\in\mathbb{N},\, \bigcup_{r\in\mathbb{N}}\mathcal{X}_r=\mathbb{R}^d;$ e.g., the family of scaled unit balls.
- Plug-in OT map estimator $\hat{T}^{\mu,m}_{\nu,n}(\cdot;\theta)$ estimates T^{μ}_{ν} based on *m* samples from μ and *n* samples from ν with smoothing parameter θ , subject to:
	- **Shape condition:** $\widehat{T}_{\nu,m}^{\mu,m}(\,\cdot\,;\theta) = \nabla \widehat{\varphi}_{\nu,m}^{\mu,m}(\,\cdot\,;\theta), \widehat{\varphi}_{\nu,n}^{\mu,m}(\,\cdot\,;\theta) \in \mathcal{C}^{2,\alpha}(\mathbb{R}^d)$ is $\overline{\lambda}$ -smooth, <u>λ</u>-strongly convex
(preserves the requierity of $\widehat{\omega}$.): (preserves the regularity of $\widehat{\mu}_t$);
	- $\textbf{Growth condition: } \mathbb{E}\Big[\big\|\widehat{T}_{\nu,n}^{\mu,m}(x;\theta)\big\|^2\Big] \leq u_1(\nu) + u_2(\nu)\|x\|^2 \; \forall x \in \mathbb{R}^d \; \text{where} \; u_1(\nu), \, u_2(\nu) \; \text{depend on} \; \nu$ (controls the approximation error of $\widehat{\mu}_{t+1} \approx \left[\frac{1}{K} \sum_{k=1}^{K} \widehat{T}_{t+1,k}\right] \sharp \widehat{\mu}_t$);
	- **Consistency condition:** for all $\epsilon > 0$, there exist $\overline{\theta}(\mu, \nu, \epsilon)$ and $\overline{n}(\mu, \nu, \epsilon)$ depending on μ, ν, ϵ , such $\textnormal{that} \ \mathbb{E}\Big[\big\|\widehat T^{\mu,m}_{\nu,n}(\,\cdot\,;\theta)-T^{\mu}_{\nu}\big\|^2_{\mathcal{L}^2(\mu)}\Big] \leq \epsilon \ \ \forall \theta\geq \overline{\theta}(\mu,\nu,\epsilon),\, \forall m\geq \overline{n}(\mu,\nu,\epsilon),\, \forall n\geq \overline{n}(\mu,\nu,\epsilon) \ \textnormal{(controls the)}.$ estimation error of $\widehat{T}_{t+1,k} \approx T_{\nu_k}^{\widehat{\mu}_t}$).

Concrete fixed-point algorithm

```
Algorithm: Stochastic fixed-point algorithm (concrete)
     Input: K input measures \nu_1, \ldots, \nu_K \in \mathcal{M}, \rho_0 \in \mathcal{M}_{\text{full}}, family (\mathcal{X}_r)_{r \in \mathbb{N}} of increasing sets,
                    plug-in OT map estimator \widehat T^{\mu,m}_{\nu,n}(\,\cdot\,;\theta).Output: (\widehat{\mu}_t)_{t \in \mathbb{N}_0}.<br>Initialize \widehat{\Omega}_0 \leftarrow \Omega_0.
    Initialize \hat{\rho}_0 \leftarrow \rho_0.
2 for t = 0, 1, 2, ... do
 3 Choose R_t \in \mathbb{N}.
 4 \hat{\mu}_t \leftarrow \hat{\rho}_t | \chi_{R_t}.5 for k = 1, ..., K do
 6 Choose \Theta_{t,k} \in \mathbb{N} and N_{t,k} \in \mathbb{N}.
  7 Randomly generate N_{t,k} i.i.d. samples \{X_{t+1,k,i}\}_{i=1:N_{t,k}} from \hat{\mu}_t.<br>Pendemix generate N_t, i.i.d. samples \{X_{t+1}, X_t\} from \mu_t.
  \textbf{s} \quad | \quad Randomly generate N_{t,k} i.i.d. samples \{Y_{t+1,k,i}\}_{i=1:N_{t,k}} from \nu_k.9 \left[ \hat{T}_{t+1,k} \leftarrow \hat{T}_{\nu,n}^{\mu,m}(\cdot;\theta) \right]_{\mu=\widehat{\mu}_t, \nu=\nu_k, \theta=\Theta_{t,k}, m=n=N_{t,k}}10 \left[ \widehat{\rho}_{t+1} \leftarrow \left[ \frac{1}{K} \sum_{k=1}^{K} \widehat{T}_{t+1,k} \right] \sharp \widehat{\rho}_{t} \right]
```
Convergence analysis

Theorem (Convergence of the stochastic fixed-point algorithm)

Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ be the filtered probability space induced by the stochastic fixed-point *algorithm where* F*^t is the* σ*-algebra generated by all samples up to iteration t. Let* β > 0*. Then, one can explicitly construct* (F*t*)*t*≥0*-adapted stochastic processes* (*Rt*)*t*≥0*,* (Θ*t*,*k*)*t*≥0, *^k*=1:*K, and* $(N_{t,k})_{t>0, k=1:K}$

$$
R_0 := \overline{r}_2(\widehat{\rho}_0, \nu_1, \dots, \nu_K, 1),
$$

\n
$$
R_t := \max \left\{ \overline{r}_1(\widehat{\rho}_t, t^{-(1+\beta)}), \overline{r}_2(\widehat{\rho}_t, \nu_1, \dots, \nu_K, (t+1)^{-2(1+\beta)}) \right\} \qquad \forall t \ge 1,
$$

\n
$$
\Theta_{t,k} := \overline{\theta}(\widehat{\mu}_t, \nu_k, (t+1)^{-2(1+\beta)}) \qquad \forall t \ge 0, \forall 1 \le k \le K,
$$

\n
$$
N_{t,k} := \overline{n}(\widehat{\mu}_t, \nu_k, (t+1)^{-2(1+\beta)}) \qquad \forall t \ge 0, \forall 1 \le k \le K,
$$

\n
$$
\forall t \ge 0, \forall 1 \le k \le K,
$$

such that:

- *it holds* \mathbb{P} *-almost surely that* $(\hat{\mu}_t)_{t>0}$ *is tight and every* \mathcal{W}_2 *-accumulation point of* $(\hat{\mu}_t)_{t>0}$ *is a fixed point of G;*
- *in particular, if G* has a unique fixed-point, then $\widehat{\mu}_t \stackrel{\mathcal{W}_2}{\longrightarrow} \bar{\mu}$ \mathbb{P} -almost surely as $t \to \infty$, where $\bar{\mu}$ is *the Wasserstein barycenter* of ν_1, \ldots, ν_K .

Outline

¹ [Optimal transport and Wasserstein barycenter](#page-1-0)

² [Stochastic fixed-point algorithm for Wasserstein barycenter](#page-6-0)

³ [Concrete plug-in OT map estimators](#page-13-0)

⁴ [Preliminary numerical results](#page-18-0)

Concrete plug-in OT map estimators

- **Recall:** a plug-in OT map estimator approximates T^{μ}_{ν} based on m samples X_1, \ldots, X_m from μ and *n* samples Y_1, \ldots, Y_n from ν .
- We combine the results of Manole, Balakrishnan, Niles-Weed, and Wasserman [2021] and Taylor [2017] to get a shape-constrained convex least squares based OT map estimator.
- **Step 1:** solve the **discrete OT problem**: $\hat{\pi}^* \in \arg \min_{\hat{\pi} \in \Pi(\check{\mu}_m, \check{\nu}_n)} \{ \int_{\mathbb{R}^d \times \mathbb{R}^d} ||x y||^2 \, \hat{\pi}(\text{d}x, \text{d}y) \},$ where $\breve{\mu}_m:=\frac{1}{m}\sum_{i=1}^m \delta_{X_i},\, \breve{\nu}_n:=\frac{1}{n}\sum_{j=1}^n \delta_{Y_j}$ are empirical measures.
- **Step 2:** solve the **quadratically constrained quadratic programming (QCQP) problem**:

minimize
\n
$$
\sum_{(\tilde{\varphi}_i), (\tilde{\mathbf{g}}_i) }^m \sum_{i=1}^n \sum_{j=1}^n \hat{\pi}^* \big(\{ (X_i, Y_j) \} \big) \| \tilde{\mathbf{g}}_i + \underline{\lambda} X_i - Y_j \|^2
$$
\nsubject to
\n
$$
\tilde{\varphi}_j \geq \tilde{\varphi}_i + \langle \tilde{\mathbf{g}}_i, X_j - X_i \rangle + \frac{1}{2(\overline{\lambda} - \underline{\lambda})} \| \tilde{\mathbf{g}}_i - \tilde{\mathbf{g}}_j \|^2 \qquad \forall 1 \leq i \leq m, \ \forall 1 \leq j \leq m,
$$
\n
$$
\| \tilde{\mathbf{g}}_i + \underline{\lambda} X_i \|^2 \leq \overline{u}_0(\nu)^2 \qquad \forall 1 \leq i \leq m,
$$

where $\overline{u}_0(\nu)$ is the radius of $\mathrm{supp}(\nu)$. Let $(\widetilde{\varphi}_i^{\star})_{i=1:m},$ $(\widetilde{g}_i^{\star})$ $\binom{x}{i}$ _{*i*=1:*m*} be the optimizer.

[Concrete plug-in OT map estimators](#page-13-0)

Concrete plug-in OT map estimators

Step 3: for each $x \in \mathbb{R}^d$, solve the **quadratic programming problem**:

$$
\Delta := \left\{ w = (w_1, \dots, w_m)^\top : \sum_{i=1}^m w_i = 1, \ w_i \ge 0 \ \forall 1 \le i \le m \right\} \subset \mathbb{R}^m,
$$

$$
\widetilde{G}^{\star} := \begin{pmatrix} \frac{1}{\widetilde{s}_1^{\star}} \ \widetilde{s}_2^{\star} \ \cdots \ \widetilde{s}_m^{\star} \end{pmatrix} \in \mathbb{R}^{d \times m},
$$

$$
v_i := \varphi_i^{\star} + \frac{1}{2(\overline{\lambda} - \underline{\lambda})} ||g_i^{\star}||^2 + \frac{\underline{\lambda} \overline{\lambda}}{2(\overline{\lambda} - \underline{\lambda})} ||X_i||^2 - \frac{\overline{\lambda}}{\overline{\lambda} - \underline{\lambda}} \langle g_i^{\star}, X_i \rangle \in \mathbb{R} \qquad \forall 1 \le i \le m,
$$

$$
v := (v_1, \dots, v_m)^\top \in \mathbb{R}^m,
$$

$$
\widehat{T}_{\text{SCCLS}}(\boldsymbol{x}) := \underline{\lambda} \boldsymbol{x} + \widetilde{G}^{\star} \widehat{\boldsymbol{w}}(\boldsymbol{x}),
$$

where $\widehat{\boldsymbol{w}}(\boldsymbol{x}) \in \arg \max_{\boldsymbol{w} \in \Delta} \left\{ \langle \widetilde{G}^{\star \top} \boldsymbol{x} + \boldsymbol{v}, \boldsymbol{w} \rangle - \frac{1}{2(\overline{\lambda} - \underline{\lambda})} ||\widetilde{G}^{\star} \boldsymbol{w}||^2 \right\} \qquad \forall \boldsymbol{x} \in \mathbb{R}^d.$

 T_{SCCLS} is uniquely defined and satisfies the **growth and consistency conditions**.

However, T_{SCCLS} does not satisfy the **shape condition** as it lacks differentiability.

Smoothing

- We apply smoothing techniques to $T_{\rm SCCLS}$ to obtain two plug-in OT map estimators.
- **Kernel smoothing:**

$$
\widehat{T}_{\text{kern}}(x;\theta) := \int_{\mathbb{R}^d} \Psi_{\theta}(\boldsymbol{\eta}) \widehat{T}_{\text{SCCLS}}(x-\boldsymbol{\eta}) d\boldsymbol{\eta} \qquad \forall x \in \mathbb{R}^d,
$$

where $\Psi_\theta(\bm{\eta}):=(2\pi)^{-\frac{d}{2}}\theta^d\exp\big(-\theta^2\|\bm{\eta}\|^2/2\big)$ is the Gaussian kernel with covariance $\theta^{-2}\mathbf{I}.$

Softmax smoothing: \bullet

$$
\widehat{T}_{\text{smax}}(x;\theta) := \underline{\lambda}x + \widetilde{G}^{\star}\widehat{w}(x;\theta),
$$
\nwhere $\widehat{w}(x;\theta) := \underset{w \in \Delta}{\arg \max} \left\{ \langle \widetilde{G}^{\star T}x + v, w \rangle - \frac{1}{2(\overline{\lambda} - \underline{\lambda})} ||\widetilde{G}^{\star}w||^2 - \frac{\eta(w)}{\theta} \right\}$ $\forall x \in \mathbb{R}^d$,

where $\eta(w_1, ..., w_m) := \log(m) + \sum_{i=1}^m w_i \log(w_i)$.

Properties of the smoothed plug-in OT map estimators

Theorem (Properties of smoothed plug-in OT map estimators)

*Both T*_{kern}(·;θ) and *T*_{smax}(·;θ) satisfy the **shape, growth, and consistency conditions***. Specifically:*

 $u_1(\nu):=18\overline{u}_0(\nu)^2$, $u_2(\nu):=2$, $\overline{n}(\mu,\nu,\epsilon):=\min\left\{n\in\mathbb{N}:C(\mu,\nu)\log(n)^2\kappa(n)\leq\frac{\epsilon}{4}\right\}$ for both $T_{\rm kern}(· ; \theta)$ *and* $T_{\rm smax}(· ; \theta)$ *;*

$$
\bullet \ \overline{\theta}(\mu,\nu,\epsilon) := \left[\left(\frac{4d}{\epsilon} \right)^{\frac{1}{2}} (\overline{\lambda} - \underline{\lambda}) \right] \text{ for } \widehat{T}_{\text{kern}}(\cdot;\theta),
$$

 $\overline{\theta}(\mu,\nu,\epsilon) := \left[\frac{8}{\epsilon}\log\left(\overline{n}(\mu,\nu,\epsilon)\right)\left(\overline{\lambda} - \underline{\lambda}\right)\right]$ for $\overline{T}_{\text{smax}}(\cdot;\theta)$ *,*

where $C(\mu, \nu)$ is a constant in the $\mathcal{L}^2(\mu)$ estimation error bound of Manole et al. [2021], and

$$
\kappa(n) := \begin{cases} n^{-\frac{1}{2}} & d \leq 3, \\ n^{-\frac{1}{2}} \log(n) & d = 4, \\ n^{-\frac{2}{d}} & d \geq 5 \end{cases} \qquad \forall n \in \mathbb{N}.
$$

Outline

¹ [Optimal transport and Wasserstein barycenter](#page-1-0)

² [Stochastic fixed-point algorithm for Wasserstein barycenter](#page-6-0)

³ [Concrete plug-in OT map estimators](#page-13-0)

[Preliminary numerical results](#page-18-0)

Preliminary numerical results: 2D Gaussian case

[Preliminary numerical results](#page-18-0)

Preliminary numerical results: 2D Gaussian case

- M. Agueh and G. Carlier. Barycenters in the Wasserstein space. *SIAM Journal on Mathematical Analysis*, 43(2):904–924, 2011.
- P. C. Álvarez-Esteban, E. del Barrio, J. Cuesta-Albertos, and C. Matrán. A fixed-point approach to barycenters in Wasserstein space. *Journal of Mathematical Analysis and Applications*, 441(2):744–762, 2016.
- T. Manole, S. Balakrishnan, J. Niles-Weed, and L. Wasserman. Plugin estimation of smooth optimal transport maps. *Preprint, arXiv:2107.12364v2*, 2021.
- A. B. Taylor. Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017.