Week 8

Recap
Sets and predicates
Given a domain D:
- each predicate
$$P(.)$$
 with a variable in D corresponds to
a set : $A = \{x : P(x) \equiv T\}$.
Example : $D = \neq, P(x) \equiv " \times \mod 2 = 0"$. Then, $A = \{..., -4, -2, 0, 2, 4, ...\}$
i.e. A is the set of even numbers.
- each set $A \subseteq D$ corresponds to a predicate :
 $P(x) \equiv x \in A$.
Example : $D = \neq, A = \{..., -5, -2, 1, 4, 7, 10, ...\}$.
Then, $P(x) \equiv " \times \mod 3 = 1"$.

This "duality" gives rise to notions in set theory.

$$A \subseteq B \equiv \forall x, (x \in A) \rightarrow (x \in B)$$

 $A = B \equiv \forall x, (x \in A) \leftrightarrow (x \in B)$
 $\equiv \forall x, (x \in A) \rightarrow (x \in B) \land ((x \in B) \rightarrow (x \in A))$
 $\equiv (A \subseteq B) \land (B \subseteq A)$

$$A \cup B = \{x : (x \in A) \lor (x \in B)\}$$
Union $A \cap B = \{x : (x \in A) \land (x \in B)\}$ intersection

$$\overline{A} = \{x : \neg (x \in A)\}$$

$$A - B = A \cap \overline{B} = \{x : (x \in A) \land \neg (x \in B)\}$$
set difference
$$(A \setminus B)$$

$$\phi \quad \forall x, x \in \phi \equiv F$$
empty set
$$\overline{A \setminus B} = A \cap \overline{B} = \{x : (x \in A) \land \neg (x \in B)\}$$

$$Further notions in set theory
(A \setminus B)$$

$$Cardinality \quad |A| \text{ is the number of elements in } A$$
Power set
$$S \in P(A) \quad \text{iff} \quad S \subseteq A$$
Cartesian product
$$(a,b) \in A \times B \equiv (a \in A) \land (b \in B)$$

$$e.g. |R \times |R(\in |R^2) \text{ is the two-dimensional plane}$$

$$Cardinality \quad formulas \quad (related to combinatorics)$$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C|$$

 $+ |A \cap B \cap c|$ $|P(A)| = 2^{|A|} = \sum_{j=0}^{|A|} {|A| \choose j}$ $|A \times B| = |A| \cdot |B|$

Method 2 : Applying set identity theorems
Completely analogous to proving logical equivalence using
logical equivalence laws. In fact, every set identity law
in the lecture except
$$A-B = A \cap \overline{B}$$
 (this one is
by definition) is a direct translation of a logical
equivalence law.

Method 3: membership table (recommended for exams)
Completely analogous to proving logical equivalence using a
truth table. The idea is to let
$$p = (x \in A)$$
, $q = (x \in B)$,
 $r = (x \in C)$, ...

Q6: Let P(C) denote the power set of C. Prove that for two sets A and B $P(A) \subseteq P(B) \iff A \subseteq B.$

Proof of " \Leftarrow ": assume that $A \subseteq B$. Let $S \in P(A)$ be arbitrary. Then, $S \subseteq A \subseteq B$ and thus $S \subseteq B$. This means that $S \in P(B)$. Therefore, $P(A) \subseteq P(B)$. We have proved that $A \subseteq B \implies P(A) \subseteq P(B)$.

 $P_{roof} of "\Longrightarrow": assume that <math>P(A) \subseteq P(B)$. Since $A \subseteq A$, we get $A \in P(A) \subseteq P(B)$ and thus $A \in P(B)$. This means that $A \subseteq B$. We have proved that $P(A) \subseteq P(B) \Longrightarrow A \subseteq B$.

Therefore, we conclude that $P(A) \subseteq P(B) \iff A \subseteq B$.

Q9: Prove that for the sets A,B,C,D

$$(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D).$$

Does the equality hold? LHS RHS
Let $(x, y) \in LHS$ be arbitrary. Then, either $(x, y) \in A \times B$
or $(x, y) \in C \times D$.
Case $I : (x, y) \in A \times B$. In this case, $x \in A$ and $y \in B$.
Subsequently, $x \in A \cup C$, $y \in B \cup D$, and thus
 $(x, y) \in (A \cup C) \times (B \cup D)$.

Case
$$2 : (x, y) \in C \times D$$
. In this case, $x \in C$ and $y \in D$.
Subsequently, $x \in A \cup C$, $y \in B \cup D$, and thus
 $(x, y) \in (A \cup C) \times (B \cup D)$.

In both cases, $(x, y) \in RHS$. Therefore, LHS $\subseteq RHS$.

The equality does not hold, as demonstrated by the following
Counterexample.
Let
$$A = B = 103$$
, $C = D = 13$. Then,
LHS = $1(0,0)3 \cup 1(1,1)3 = 1(0,0), (1,1)3$,
RHS = $10, 13 \times 10, 13 = 1(0,0), (0,1), (1,0), (1,1)3$.
LHS \neq RHS.

Q11: How many subsets of $\{1, \ldots, n\}$ are there with an even number of elements? Justify your answer.

The number of subsets of $\lambda(1, \dots, n_3) = 2^n$.

If n is odd: for every
$$S \subseteq \{1, ..., n\}$$
 with $|s| even$,
 $\overline{S} = \{1, ..., n\} - S$ satisfies $\overline{S} \subseteq \{1, ..., n\}$ and $|\overline{S}| = n - |s|$,
which means $|\overline{S}|$ is odd (since n is odd). This analysis
shows that every subset of $\{1, ..., n\}$ with an even number of
elements corresponds to exactly one subset of $\{1, ..., n\}$ with an
odd number of elements, i.e. the number of subsets of $\{1, ..., n\}$
with an even number of elements and the number of subsets of
 $\{1, ..., n\}$ with an odd number of elements are the same, and
they are both equal to $\frac{2^n}{2} = 2^{n-1}$.
Example: when $n = 3$,
even odd
 $\phi = -\{1, 2, 3\}$
 $\{1, 2\} = -\{3\}$
 $\{1, 3\} = -\{1\}$
This also follows from the fact that $\forall 0 \le k \le n$, $\binom{n}{k} = \binom{n}{n-k}$.
 $\sum_{\substack{n \le k \le n \ k \le k \le n}} \binom{n}{(n-k)} = \sum_{\substack{0 \le j \le n \ k \le k \le n}} \binom{n}{(j)}$.

If n is even: a set
$$S \subseteq \{1, ..., n\}$$
 with $|S|$ even either
contains n, or does not contain n.
Case 1: n \in S. In this case, in order to build such an S,
one first chooses $T \subseteq \{1, ..., n-1\}$ with $|T|$ odd, and then
let $S = T \cup \{n\}$. Since n-1 is odd, there are 2^{n-2} ways
to choose such a T, and thus there are 2^{n-2} ways to
build an S satisfying $S \subseteq \{1, ..., n\}$, $|S|$ is even, and n \in S.

Case 2: n & S. In this case, in order to build such an S, one chooses S = {1,..., n-1} with Isleven. Since n-1 is odd, there are 2ⁿ⁻² ways to do so.

In total, there are $2^{n-2} + 2^{n-2} = 2^{n-1}$ such subsets Alternatively, Since the number of subsets of 11,...,n3 with k elements. $(0 \le k \le n)$ is $\binom{n}{k}$, our goal is to compute osken $\binom{n}{k}$ We know that : $O = (|-|)^{N} = \sum_{\substack{0 \le k \le n \\ k \le k \le n}} {n \choose k} (-1)^{k} = \left[\sum_{\substack{0 \le k \le n \\ k \le k \le n \le n}} {n \choose k} \right] - \left[\sum_{\substack{0 \le j \le n \\ k \le k \le n \le n}} {n \choose j} \right]$ Thus, $\sum_{0 \le k \le n} {n \choose k} = \frac{2^n}{2} = 2^{n-1}$

Q12: Prove the following set equality:

$$\{7a+9b \mid a, b \in \mathbb{Z}\} = \mathbb{Z}.$$

It is clear that every element in
$$\{7a+9b|a, b\in\mathbb{Z}\}$$
 is an
integer. Thus, $\angle HS \subseteq RHS$. It remains to show that
RHS $\subseteq \angle HS$.
 $\angle et$ $n\in\mathbb{Z}$ be arbitrary. Since $7 \cdot (-5) + 9 \cdot 4 = -35 + 36 = 1$,
 $7 \cdot (-5n) + 9 \cdot (4n) = n$. Therefore, $n\in\{7a+9b|a, b\in\mathbb{Z}\}$.
We have proved that RHS $\subseteq \angle HS$ and we conclude
that $\angle HS = RHS$.

Q14: For all sets A, B, C, prove that

$$\overline{(A-B) - (B-C)} = \overline{A} \cup B.$$

using set identities.

Additional exercise

Q3: How many positive integers less than 1000 1. are divisible by 7? 2. are divisible by 7 but not by 11? 3. are divisible by both 7 and 11? 4. are divisible by either 7 or 11? 5. are divisible by exactly one of 7 and 11? 6. are divisible by neither 7 nor 11? Let U = {KEZ: 1≤K≤9993. For every mEN, let $S_m = \{ k \in \mathbb{Z} : | \le k \le 999, k \text{ is divisible by } m \}$ Observe that $|S_m| = \left|\frac{999}{m}\right|$ (L.] is the floor function) $|S_7| = \left\lfloor \frac{999}{7} \right\rfloor = |42.$ 2. Notice that $A - B = A - (A \cap B)$, and $A \cap B \subseteq A$. Therefore, $|A - B| = |A - (A \cap B)| = |A| - |A \cap B|$ $|S_7 - S_{11}| = |S_7| - |S_7 \cap S_{11}| = |S_7| - |S_{77}| = |42 - \frac{999}{77}$ = |42 - 12 = |30| $3. |S_7 \cap S_1| = |S_{17}| = 12.$ 4. $|S_7 \cup S_{11}| = |S_7| + |S_{11}| - |S_7 \cap S_{11}| = |4_2 + \lfloor \frac{999}{11} \rfloor - 12$ = |42 + 90 - |2 = 220 $J_{1} = |S_{11} - S_{7}| = |S_{11}| - |S_{11} \cap S_{7}| = |S_{11}| - |S_{71}| = 90 - 12 = 78.$ $|(S_{1}-S_{11})\cup(S_{11}-S_{7})| = |S_{7}-S_{11}| + |S_{11}-S_{7}| = |30+78 = 208.$ Since $(\varsigma_1 - \varsigma_1) \cap (\varsigma_1 - \varsigma_2) = \phi$.

6. $|U - (S_7 \cup S_{11})| = |U| - |S_7 \cup S_{11}| = 999 - 220 = 779.$

Additional Challenges

QUESTION 3.

(15 marks)

How many numbers in the range [1812, 2020] (inclusive of both 1812 and 2020) are integer multiples of **exactly** one of the two factors 4 and 5? Justify your answer.

Let
$$S_m = \{k \in \mathbb{Z} : |8|2 \le k \le 2020, k \text{ is divisible by m}\}$$

for $m \in \mathbb{N}$.
Dur goal is to compute:
 $|(S_4 - S_5) \cup (S_5 - S_4)|$
 $= |S_4 - S_5| + |S_5 - S_4|$ (Since $(S_4 - S_5) \cap (S_5 - S_4) = \phi$)
 $= |S_4 - (S_4 \cap S_5)| + |S_5 - (S_4 \cap S_5)|$
 $= |S_4| - |S_{20}| + |S_5| - |S_{20}|$
 $= |S_4| + |S_5| - 2|S_{20}|$.
 $|S_4| = \lfloor \frac{2020}{4} \rfloor - \lfloor \frac{1811}{4} \rfloor$
 $= S_3$,
 $|S_5| = \lfloor \frac{2020}{5} \rfloor - \lfloor \frac{1811}{5} \rfloor$
 $= 42$,
 $|S_{20}| = \lfloor \frac{2020}{5} \rfloor - \lfloor \frac{1811}{5} \rfloor$
 $= (2, 2) + |S_5| = 2|S_{20}| - |S_{20}|$
 $= 11.$
Answer: $S_3 + 42 - 2 \cdot 1| = 73.$

 $A \Delta C = (A - C) \cup (C - A), B \Delta C = (B - C) \cup (C - B)$

Prove, for any sets A, B, and C, if $A \triangle C = B \triangle C$ then A = B.

Approach L

Membership table & truth table

ł	4	В	С	AДС	BAC	$(A \Delta C = B \Delta C)$) (A=B)
(D	Ø	O	0	0	Т	Т
	Ü	O	(l	l	T	Т
()	l	0	0		F	F
()	1	1		0	F	F
	(D	0	1	D	F	F
	l	D	I	0	[Ŧ	F
		l	0	1		Т	Т
	l	I	l	0	D	Т	T
This table shows that $A \triangle C = B \triangle C$ iff $A = B$.							
Approach 2							
Proof by contropositive. Suppose $A \neq B$. Then, there exists x such							
that either XEA and X&B, or XEB and X&A Since the							
roles of A and B are symmetric, we assume without loss of							
apperality that XEA and X&B							
your any that roll and rq v,							

Case 1:
$$x \in C$$
. Then, $x \in A \cap C$ and $x \notin A \land C$
But $x \in C - B \subseteq B \land C$. Thus, we have found
 $x \in B \land C$ and $x \notin A \land C$.
Case Σ : $x \notin C$. Then, $x \in A - C \subseteq A \land C$. Since
 $x \notin B$, $x \notin C$. We get $x \notin B \land C$. Thus, we have
found $x \in A \land C$ and $x \notin B \land C$.
In both cases, we can conclude that $A \land C \neq B \land C$.
Thus, by proof by contrapositive, if $A \land C \neq B \land C$.
Thus, by proof by contrapositive, if $A \land C \neq B \land C$.
Thus, by proof by contrapositive $OR^{((x)}(x))$, i.e.
S $\land T = \{x : (x \in S) \land X \cap (x \in T)\}$. Some consequences:
(1) $S \land T = \phi \iff S = T$;
(2) $S \land \phi = S$, $S \land S = \phi$;
(3) \land is associative, i.e. $(R \land S) \land T = R \land (S \land T)$.
Solution: $A \land C = B \land C \iff (A \land C) \land (B \land C) = \phi$
 $\iff A \land (C \land C) \land B = \phi$

 $\iff (A \bigtriangleup \phi) \vartriangle B = \phi$

 \Leftrightarrow A = B.