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Background

Matching for teams

Matching for teams is a multi-agent game with N populations of agents introduced by
Carlier and Ekeland [2010].

The types of agents within the i-th population are described by a probability measure
µi ∈ P(Xi) on the type space Xi, where (Xi, dXi) is a compact metric space.

There is a type of indivisible good that comes in different qualities described by a probability
measure ν ∈ P(Z) on the quality space Z, where (Z, dZ) is a compact metric space.

One agent from each population must come together to form a team in order to trade a unit of
good, subject to matching costs ci : Xi ×Z → R, which is a continuous function.

Each agent from the i-th population receives φi(z) from trading a unit of good with quality z,
where φi : Z → R is the transfer function that is continuous.

The matching between the i-th population of agents and the good is described by a joint
probability measure γi ∈ P(Xi ×Z).
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Background

Matching for teams

Definition (Matching equilibrium [Carlier and Ekeland 2010])

A matching equilibrium (φi)i=1:N, (γi)i=1:N, ν satisfies:

(conservation) for i = 1, . . . ,N, γi ∈ Γ(µi, ν) :=
{
γ ∈ P(Xi ×Z) : the marginals of γ on Xi and

Z are µi and ν
}

;

(balance)
∑N

i=1 φi(z) = 0 for all z ∈ Z;

(rationality) for i = 1, . . . ,N, φci
i (xi) + φi(z) = ci(xi, z) for γi-almost all (xi, z) ∈ Xi ×Z, where

φci
i (xi) := inf

z∈Z

{
ci(xi, z)− φi(z)

}
∀xi ∈ Xi. (ci-transform of φi)

In particular, due to the Kantorovich duality:

inf
γi∈Γ(µi,ν)

{∫
Xi×Z

ci dγi

}
= sup

φi∈C(Z)

{∫
Xi

φci
i dµi +

∫
Z
φi dν

}
.

the rationality condition implies that γi solves the optimal transport problem:

Wci(µi, ν) := inf
γi∈Γ(µi,ν)

{∫
Xi×Z

ci dγi

}
.
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Background

Characterization of matching equilibrium

Theorem (Characterization of matching equilibrium [Carlier and Ekeland 2010])
1 There exists a matching equilibrium.

2 (φ̃i)i=1:N, (γ̃i)i=1:N, and ν̃ form a matching equilibrium if and only if:
ν̃ is an optimizer of:

inf
ν∈P(Z)

{
N∑

i=1

Wci(µi, ν)

}
; (MT)

for i = 1, . . . ,N, γ̃i is an optimizer of infγi∈Γ(µi,ν)

{ ∫
Xi×Z ci dγi

}
, i.e.,

∫
Xi×Z ci dγ̃i = Wci(µi, ν̃).

(φ̃i)i=1:N is an optimizer of:

sup

{
N∑

i=1

∫
Xi

φ
ci
i dµi : (φi : Z → R)i=1:N are continuous,

N∑
i=1

φi = 0

}
; (MT∗)

3 (MT) and (MT∗) have identical optimal values.
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Background

Example 1: business locations

Consider a business in a city which hires N − 1 categories of employees that is choosing the
locations of business outlets.

µ1, . . . , µN−1: geographical distributions of employees’ dwellings;
c1, . . . , cN−1: employees’ commuting costs;
φ1, . . . , φN−1: employees’ salary;
γ1, . . . , γN−1: employees’ workplace choices;
µN: geographical distribution of suppliers;
cN: business’s restocking cost;
φN: negative of business’s total salary payout;
γN: business’s choices of outlet locations;
ν: geographical distribution of business outlets.

At (matching) equilibrium:

the total salary payout needs to be balanced with the total salary received by the employees,
i.e., −φN(z) =

∑N−1
i=1 φi(z) for all z ∈ Z;

employees choose workplace rationally and business owners choose the business outlet locations
rationally, i.e., for i = 1, . . . ,N, φci

i (xi) + φi(z) = ci(xi, z) for γi-almost all (xi, z) ∈ Xi ×Z.
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Background

Example 2: Wasserstein barycenter

For p ∈ [1,∞), the optimal transport problem with cost dX ( · , · )p induces a metric Wp(·, ·)
called the Wasserstein distance of order p on the space of probability measures, i.e.,

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

{∫
X×X

dX (x, x′)p γ(dx,dx′)
}) 1

p

.

When X1 = · · · = XN = Z ⊂ Rd, ci(x, z) := λi∥x − z∥2
2 for i = 1, . . . ,N where

λ1 > 0, . . . , λN > 0,
∑N

i=1 λi = 1, (MT) corresponds to:

inf
ν∈P(Z)

{
N∑

i=1

λiW2(µi, ν)
2

}
.

ν̃ that minimizes (MT) is called a Wasserstein barycenter of µ1, . . . , µN with
weights λ1, . . . , λN [Agueh and Carlier 2011].

The input measures µ1, . . . , µN can be:
posterior distributions of sub-samples in Bayesian inference (e.g., Srivastava, Li, Dunson [2018]);

histograms representing complex objects in clustering (e.g., Ye, Wu, Zhang, Li [2017]);

color palette distributions in color transfer (e.g., Fan, Taghvaei, Chen [2020]), etc.
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Background

Existing methods

Existing numerical methods for matching for teams/Wasserstein barycenter:

assume parametric measures such as Gaussian: e.g., Álvarez-Esteban et al. [2016],
Chewi et al. [2020];

assume discrete measures or discretize continuous measures: e.g., Carlier, Oberman,
Oudet [2015], Benamou et al. [2015], and Anderes, Borgwardt, Miller [2016];

restrict the support of ν to a prespecified finite set (i.e., fixed-support methods):
e.g., Staib et al. [2017], Claici, Chien, Solomon [2018], Dvurechenskii et al. [2018];

adopt neural network parametrizations: e.g., Fan, Taghvaei, Chen [2020], Li et al. [2020],
Korotin et al. [2021].

Our numerical method:

works for general cost functions c1, . . . , cN and general non-discrete, non-parametric µ1, . . . , µN;

works in a free-support setting, i.e., does not restrict the support of ν;

computes feasible and approximately optimal solutions of (MT) and (MT∗);

computes a sub-optimality bound that is typically less conservative than theoretical bounds.
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Parametric approximation scheme

Parametric approximation

Observe that

sup

{
N∑

i=1

∫
Xi

φci
i dµi : (φi)i=1:N ⊂ C(Z),

N∑
i=1

φi = 0

}

= sup

{
N∑

i=1

∫
Xi

ψi dµi :
(φi)i=1:N ⊂ C(Z), ψi ∈ C(Xi) ∀1 ≤ i ≤ N,

∑N
i=1 φi = 0

ψi(x) + φi(z) ≤ ci(x, z) ∀(x, z) ∈ Xi ×Z, ∀1 ≤ i ≤ N

}
.

We obtain a parametric approximation of (MT∗) by:
parametrizing φi with basis functions H = {h1, . . . , hk} ⊂ C(Z): φi =

∑k
l=1 wi,lhl,

parametrizing ψi with basis functions Gi = {gi,1, . . . , gi,mi} ⊂ C(Xi): ψi = yi,0 +
∑mi

j=1 yi,jgi,j.

maximize
(yi,0,yi,wi)

N∑
i=1

yi,0 + ⟨ḡi,yi⟩

subject to yi,0 + ⟨gi(x),yi⟩+ ⟨h(z),wi⟩ ≤ ci(x, z) ∀(x, z)∈Xi×Z, ∀1 ≤ i ≤ N,
N∑

i=1

wi = 0.

(MT∗
par)
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Parametric approximation scheme

Duality results

(MT∗
par) is a linear semi-infinite programming (LSIP) problem and admits the following

dual optimization problem:

minimize
(θi)

N∑
i=1

∫
Xi×Z

ci dθi

subject to θi ∈ Γ(µ̄i, ν̄i) ∀1 ≤ i ≤ N,

µ̄i
Gi∼ µi ∀1 ≤ i ≤ N,

ν̄i
H∼ ν̄1 ∀1 ≤ i ≤ N.

(MTpar)

Strong duality can be established via classical LSIP theory [Goberna and López 1998].

Theorem (Strong duality)

The strong duality between (MT∗
par) and (MTpar) holds, i.e., the optimal values of

(MT∗
par) and (MTpar) are identical.
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Parametric approximation scheme

Computational complexity

The theoretical computational complexity of (MT∗
par) and (MTpar) can be analyzed through the

volumetric center method of Vaidya [1996] in terms of the global minimization oracle
defined as follows.

Definition (Global minimization oracle)

Oracle(i,yi,wi) solves the global minimization problem:

min
(x,z)∈Xi×Z

{
ci(x, z)− ⟨gi(x),yi⟩ − ⟨h(z),wi⟩

}
and returns an optimizer (x⋆, z⋆) and the optimal value β⋆ with computational cost T.
(Note that T does not depend on N.)

Intuition: Oracle determines the “most violated” constraint.
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Parametric approximation scheme

Computational complexity

Theorem (Computational complexity)

Let m :=
∑N

i=1 mi =
∑N

i=1 |Gi|, k := |H|. Then, in the Euclidean case (i.e., when X1, . . . ,XN,Z are
all Euclidean),

1 the computational complexity of computing an ϵ-optimizer of (MT∗
par) is

O
(
(m + Nk) log((m + Nk)/ϵ)(NT + (m + Nk)ω)

)
;

2 the computational complexity of computing a pair of ϵ-optimizers of (MT∗
par) and (MTpar) is

polynomial in N, m, k, T, and log
( 1
ϵ

)
.

O(mω) is the computational complexity of the multiplication of two m × m matrices.

We also derive the theoretical computational complexity in the general non-Euclidean case.
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Parametric approximation scheme

Construction of approximate matching equilibrium
Given: approx. optimizer (θ̂i)i=1:N of (MTpar), approx. optimizer (ŷi,0, ŷi, ŵi)i=1:N of (MT∗

par).

Construction of approximate optimizer of (MT∗):
for i = 1, . . . ,N − 1, φ̃i(z) := infx∈Xi

{
ci(x, z)− ŷi,0 − ⟨gi(x), ŷi⟩

}
− φ̃i,0,

where φ̃i,0 := infx∈Xi

{
ci(x, z0)− ŷi,0 − ⟨gi(x), ŷi⟩

}
− φ̃i,0 for some point z0 ∈ Z;

φ̃N(z) := −
∑N−1

i=1 φ̃i(z).

Construction of approximate optimizer of (MT) via gluing:
step 1: for i = 1, . . . ,N, glue θ̂i ∈ Γ(µ̂i, ν̂i) with a W1-optimal coupling η̂i ∈ Γ(µ̂i, µi) and
a W1-optimal coupling ρ̂i ∈ Γ(ν̂i, ν̂1) to get γ̂i ∈ Γ(µi, ν̂1);
step 2: glue γ̂1 ∈ Γ(µ1, ν̂1), . . . , γ̂N ∈ Γ(µN, ν̂1) together to get µ̃ ∈ Γ(µ1, . . . , µN);
step 3: let ν̃ := z̃♯µ̃, and let γ̃i := (proji, z̃)♯µ̃ for i = 1, . . . ,N, where

z̃(x1, . . . , xN) ∈ argminz∈Z

{∑N
i=1 ci(xi, z)

}
.
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Parametric approximation scheme

Construction of approximate matching equilibrium

Theorem (Approximate matching equilibrium)

Suppose that:

ci is Lc-Lipschitz continuous for i = 1, . . . ,N;

ϵ0 :=
(∑N

i=1

∫
Xi×Z ci dθ̂i

)
−
(∑N

i=1 ŷi,0 + ⟨ḡi, ŷi⟩
)

, i.e., duality gap when solving (MTpar) and (MT∗
par).

ϵ := ϵ0 + Lc

(∑N
i=1 supµ′

i

Gi∼µi

{
W1(µi, µ̂i)

}
+ sup

ν
H∼ν′

{
W1(ν, ν

′)
})

.

Then, the constructed ν̃, (γ̃i)i=1:N, and (φ̃i)i=1:N satisfy:

1 ν̃ is an ϵ-optimizer of (MT);
2 for i = 1, . . . ,N, γ̃i ∈ Γ(µi, ν̃) and

∫
Xi×Z ci dγ̃i ≤ Wci(µi, ν̃) + ϵ.

3 (φ̃i)i=1:N is an ϵ-optimizer of (MT∗);
Such

(
(φ̃i)i=1:N, ν̃, (γ̃i)i=1:N

)
is called an ϵ-approximate matching equilibrium.
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Parametric approximation scheme

Convergence to true matching equilibrium

Corollary (Convergence to true matching equilibrium)

Let
(
(φ̃

(l)
i )i=1:N, ν̃

(l), (γ̃
(l)
i )i=1:N

)
be an ϵ(l)-approx. matching equilibrium with liml→∞ ϵ(l) = 0. Then:

(φ̃
(l)
i )l∈N has at least one accumulation point in (C(Z), ∥ · ∥∞) for i = 1, . . . ,N;

(ν̃(l))l∈N has at least one accumulation point in (P(Z),W1);

(γ̃
(l)
i )l∈N has at least one accumulation point in (P(Xi ×Z),W1) for i = 1, . . . ,N.

If φ̃(lt)
i

unif.−→
t→∞

φ̃
(∞)
i ∀1 ≤ i ≤ N, ν̃(lt) W1−→

t→∞
ν̃(∞), and γ̃(lt)

i
W1−→

t→∞
γ̃
(∞)
i ∀1 ≤ i ≤ N,

then
(
(φ̃

(∞)
i )i=1:N, ν̃

(∞), (γ̃
(∞)
i )i=1:N

)
is a matching equilibrium.

In the Euclidean case, we can explicitly construct continuous piece-wise affine basis functions
G1, . . . ,GN,H to control the approximation error ϵ to be arbitrarily close to 0.
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Parametric approximation scheme

Numerical algorithm

We first develop a cutting-plane algorithm for computing an approximate optimizer
(θ̂i)i=1:N of (MTpar) and an approximate optimizer (ŷi,0, ŷi, ŵi)i=1:N of (MT∗

par).

We then develop an algorithm for computing an approximate matching equilibrium via
constructing random variables on a probability space, with the following properties.

Theorem (Matching for teams algorithm)

Under suitable conditions, for any ϵ > 0, the proposed algorithm produces outputs
(φ̃i)i=1:N, ν̃, (γ̃i)i=1:N, αLB, αUB, and ϵsub satisfying:

1 αLB ≤ (MT∗) = (MT) ≤ αUB and ϵsub := αUB − αLB ≤ ϵ (typically ϵsub ≪ ϵ in practice);

2 ν̃ is an ϵsub-optimizer of (MT);

3 for i = 1, . . . ,N, γ̃i ∈ Γ(µi, ν̃) and
∫
Xi×Z ci dγ̃i ≤ Wci(µi, ν̃) + ϵsub.

4 (φ̃i)i=1:N is an ϵsub-optimizer of (MT∗);
In particular,

(
(φ̃i)i=1:N, ν̃, (γ̃i)i=1:N

)
form an ϵsub-approximate matching equilibrium.
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Numerical results

Experiment 1: business locations

Settings:

N = 5; the city has a railway line with 5 stations;

commuting costs:

ci(x, z) := min

{
∥x − z∥1︸ ︷︷ ︸

walk from home
to workplace

, min
1≤j,k≤5

{
∥x − uj∥1︸ ︷︷ ︸

walk from home
to station j

+ Cj,k︸︷︷︸
take train from

station j to station k

+ ∥uk − z∥1︸ ︷︷ ︸
walk from station k

to workplace

}}
;

restocking cost: cN(x, z) := ∥x − z∥1.
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Numerical results

Experiment 1: business locations

Computed bounds αLB, αUB and sub-optimality estimates ϵsub:
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Numerical results

Numerical results

Computed approximate matching equilibrium:
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Numerical results

Experiment 2: Wasserstein barycenter
Settings:

We compute the Wasserstein barycenter of N = 20 probability measures.
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Numerical results

Experiment 2: Wasserstein barycenter
Computed bounds αLB, αUB and sub-optimality estimates ϵsub:

Computed approximate Wasserstein barycenters:
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Conclusion

Conclusion

Theoretical contributions:

Development of a parametric approximation scheme (MT∗
par) of (MT∗).

Derivation of duality results for (MT∗
par) and its dual optimization problem (MTpar).

Analysis of the theoretical computational complexity of (MT∗
par) and (MTpar).

Construction of ϵ-optimizers of (MT) and (MT∗) (referred to as ϵ-approximate matching equilibrium),
and showing their convergence to a true matching equilibrium.

Explicit construction of (MT∗
par) to control the approximation error.

Numerical method:

Development of a numerical algorithm which can compute ϵ0-optimizers of (MTpar) and (MT∗
par) for

any ϵ0 > 0.

Development of a numerical algorithm which can compute an ϵ-approximate matching equilibrium
as well as lower and upper bounds αLB ≤ (MT∗) = (MT) ≤ αUB with αUB − αLB ≤ ϵ for any ϵ > 0.

Application to the business location distribution problem and the Wasserstein barycenter problem.
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