Feasible approximation of matching equilibria for large-scale matching for teams problems

Qikun Xiang

Nanyang Technological University, Singapore

July 5, 2024

Joint work with:

Ariel Neufeld,

Nanyang Technological University, Singapore

Matching for teams

- Matching for teams is a multi-agent game with *N* populations of agents introduced by Carlier and Ekeland [2010].
- The types of agents within the *i*-th population are described by a probability measure $\mu_i \in \mathcal{P}(\mathcal{X}_i)$ on the type space \mathcal{X}_i , where $(\mathcal{X}_i, d_{\mathcal{X}_i})$ is a compact metric space.
- There is a type of indivisible good that comes in different qualities described by a probability measure ν ∈ P(Z) on the quality space Z, where (Z, d_Z) is a compact metric space.
- One agent from each population must come together to form a team in order to trade a unit of good, subject to matching costs c_i : X_i × Z → ℝ, which is a continuous function.
- Each agent from the *i*-th population receives φ_i(z) from trading a unit of good with quality z, where φ_i : Z → ℝ is the transfer function that is continuous.
- The matching between the *i*-th population of agents and the good is described by a joint probability measure γ_i ∈ P(X_i × Z).

Matching for teams

Definition (Matching equilibrium [Carlier and Ekeland 2010])

A matching equilibrium $(\varphi_i)_{i=1:N}$, $(\gamma_i)_{i=1:N}$, ν satisfies:

- (conservation) for i = 1, ..., N, $\gamma_i \in \Gamma(\mu_i, \nu) := \{\gamma \in \mathcal{P}(\mathcal{X}_i \times \mathcal{Z}) : \text{the marginals of } \gamma \text{ on } \mathcal{X}_i \text{ and } \mathcal{Z} \text{ are } \mu_i \text{ and } \nu\};$
- (balance) $\sum_{i=1}^{N} \varphi_i(z) = 0$ for all $z \in \mathbb{Z}$;
- (rationality) for i = 1, ..., N, $\varphi_i^{c_i}(x_i) + \varphi_i(z) = c_i(x_i, z)$ for γ_i -almost all $(x_i, z) \in \mathcal{X}_i \times \mathcal{Z}$, where

$$\varphi_i^{c_i}(x_i) := \inf_{z \in \mathcal{Z}} \left\{ c_i(x_i, z) - \varphi_i(z) \right\} \quad \forall x_i \in \mathcal{X}_i. \quad (c_i \text{-transform of } \varphi_i)$$

• In particular, due to the Kantorovich duality:

$$\inf_{\gamma_i\in\Gamma(\mu_i,\nu)}\bigg\{\int_{\mathcal{X}_i\times\mathcal{Z}}c_i\,\mathrm{d}\gamma_i\bigg\}=\sup_{\varphi_i\in\mathcal{C}(\mathcal{Z})}\bigg\{\int_{\mathcal{X}_i}\varphi_i^{c_i}\,\mathrm{d}\mu_i+\int_{\mathcal{Z}}\varphi_i\,\mathrm{d}\nu\bigg\}.$$

the rationality condition implies that γ_i solves the optimal transport problem:

$$W_{c_i}(\mu_i,\nu) := \inf_{\gamma_i \in \Gamma(\mu_i,\nu)} \bigg\{ \int_{\mathcal{X}_i \times \mathcal{Z}} c_i \, \mathrm{d}\gamma_i \bigg\}.$$

Characterization of matching equilibrium

Theorem (Characterization of matching equilibrium [Carlier and Ekeland 2010])

- There exists a matching equilibrium.
- (φ̃_i)_{i=1:N}, (γ̃_i)_{i=1:N}, and ν̃ form a matching equilibrium if and only if:
 ν̃ is an optimizer of:

$$\inf_{\nu \in \mathcal{P}(\mathcal{Z})} \left\{ \sum_{i=1}^{N} W_{c_i}(\mu_i, \nu) \right\};$$
(MT)

• for i = 1, ..., N, $\tilde{\gamma}_i$ is an optimizer of $\inf_{\gamma_i \in \Gamma(\mu_i, \nu)} \left\{ \int_{\mathcal{X}_i \times \mathcal{Z}} c_i \, d\gamma_i \right\}$, i.e., $\int_{\mathcal{X}_i \times \mathcal{Z}} c_i \, d\tilde{\gamma}_i = W_{c_i}(\mu_i, \tilde{\nu})$.

(φ̃_i)_{i=1:N} is an optimizer of:

$$\sup\left\{\sum_{i=1}^{N}\int_{\mathcal{X}_{i}}\varphi_{i}^{c_{i}}\,\mathrm{d}\mu_{i}:(\varphi_{i}:\mathcal{Z}\to\mathbb{R})_{i=1:N}\text{ are continuous},\ \sum_{i=1}^{N}\varphi_{i}=0\right\};$$
(MT*)

(MT) and (MT*) have identical optimal values.

Example 1: business locations

- Consider a business in a city which hires N 1 categories of employees that is choosing the locations of business outlets.
 - μ_1, \ldots, μ_{N-1} : geographical distributions of employees' **dwellings**;
 - c_1, \ldots, c_{N-1} : employees' commuting costs;
 - $\varphi_1, \ldots, \varphi_{N-1}$: employees' salary;
 - $\gamma_1, \ldots, \gamma_{N-1}$: employees' workplace choices;
 - μ_N : geographical distribution of **suppliers**;
 - *c_N*: business's **restocking cost**;
 - φ_N : negative of business's total salary payout;
 - γ_N : business's choices of outlet locations;
 - ν : geographical distribution of **business outlets**.
- At (matching) equilibrium:
 - the total salary payout needs to be **balanced** with the total salary received by the employees, i.e., $-\varphi_N(z) = \sum_{i=1}^{N-1} \varphi_i(z)$ for all $z \in \mathcal{Z}$;
 - employees choose workplace **rationally** and business owners choose the business outlet locations **rationally**, i.e., for i = 1, ..., N, $\varphi_i^{c_i}(x_i) + \varphi_i(z) = c_i(x_i, z)$ for γ_i -almost all $(x_i, z) \in \mathcal{X}_i \times \mathcal{Z}$.

Example 2: Wasserstein barycenter

For *p* ∈ [1,∞), the optimal transport problem with cost *d*_X(·,·)^{*p*} induces a metric *W*_{*p*}(·, ·) called the Wasserstein distance of order *p* on the space of probability measures, i.e.,

$$W_p(\mu,
u) := \left(\inf_{\gamma \in \Gamma(\mu,
u)} \left\{ \int_{\mathcal{X} imes \mathcal{X}} d_{\mathcal{X}}(x,x')^p \, \gamma(\mathrm{d} x,\mathrm{d} x')
ight\}
ight)^{rac{1}{p}}.$$

• When $\mathcal{X}_1 = \cdots = \mathcal{X}_N = \mathcal{Z} \subset \mathbb{R}^d$, $c_i(\mathbf{x}, \mathbf{z}) := \lambda_i ||\mathbf{x} - \mathbf{z}||_2^2$ for $i = 1, \dots, N$ where $\lambda_1 > 0, \dots, \lambda_N > 0$, $\sum_{i=1}^N \lambda_i = 1$, (MT) corresponds to:

$$\inf_{\nu\in\mathcal{P}(\mathcal{Z})}\left\{\sum_{i=1}^N\lambda_iW_2(\mu_i,\nu)^2\right\}.$$

- *ν* that minimizes (MT) is called a Wasserstein barycenter of μ₁,..., μ_N with weights λ₁,..., λ_N [Agueh and Carlier 2011].
- The input measures μ_1, \ldots, μ_N can be:
 - posterior distributions of sub-samples in Bayesian inference (e.g., Srivastava, Li, Dunson [2018]);
 - histograms representing complex objects in clustering (e.g., Ye, Wu, Zhang, Li [2017]);
 - color palette distributions in color transfer (e.g., Fan, Taghvaei, Chen [2020]), etc.

Existing methods

- Existing numerical methods for matching for teams/Wasserstein barycenter:
 - assume **parametric measures** such as Gaussian: e.g., Álvarez-Esteban et al. [2016], Chewi et al. [2020];
 - assume **discrete measures** or **discretize** continuous measures: e.g., Carlier, Oberman, Oudet [2015], Benamou et al. [2015], and Anderes, Borgwardt, Miller [2016];
 - restrict the support of ν to a prespecified finite set (i.e., fixed-support methods):
 e.g., Staib et al. [2017], Claici, Chien, Solomon [2018], Dvurechenskii et al. [2018];
 - adopt **neural network parametrizations**: e.g., Fan, Taghvaei, Chen [2020], Li et al. [2020], Korotin et al. [2021].
- Our numerical method:
 - works for general cost functions c_1, \ldots, c_N and general non-discrete, non-parametric μ_1, \ldots, μ_N ;
 - works in a free-support setting, i.e., does not restrict the support of ν ;
 - computes feasible and approximately optimal solutions of (MT) and (MT*);
 - computes a **sub-optimality bound** that is typically less conservative than theoretical bounds.

Parametric approximation

Observe that

$$\begin{split} \sup \left\{ \sum_{i=1}^{N} \int_{\mathcal{X}_{i}} \varphi_{i}^{c_{i}} \, \mathrm{d}\mu_{i} : (\varphi_{i})_{i=1:N} \subset \mathcal{C}(\mathcal{Z}), \ \sum_{i=1}^{N} \varphi_{i} = 0 \right\} \\ = \sup \left\{ \sum_{i=1}^{N} \int_{\mathcal{X}_{i}} \psi_{i} \, \mathrm{d}\mu_{i} : \begin{array}{c} (\varphi_{i})_{i=1:N} \subset \mathcal{C}(\mathcal{Z}), \ \psi_{i} \in \mathcal{C}(\mathcal{X}_{i}) \ \forall 1 \leq i \leq N, \ \sum_{i=1}^{N} \varphi_{i} = 0 \\ \psi_{i}(x) + \varphi_{i}(z) \leq c_{i}(x, z) \ \forall (x, z) \in \mathcal{X}_{i} \times \mathcal{Z}, \ \forall 1 \leq i \leq N \end{array} \right\}. \end{split}$$

- We obtain a parametric approximation of (MT*) by:
 - parametrizing φ_i with basis functions $\mathcal{H} = \{h_1, \dots, h_k\} \subset \mathcal{C}(\mathcal{Z})$: $\varphi_i = \sum_{l=1}^k w_{i,l}h_l$,
 - parametrizing ψ_i with basis functions $\mathcal{G}_i = \{g_{i,1}, \dots, g_{i,m_i}\} \subset \mathcal{C}(\mathcal{X}_i)$: $\psi_i = y_{i,0} + \sum_{j=1}^{m_i} y_{i,j}g_{i,j}$.

$$\begin{array}{ll} \underset{(y_{i,0},y_{i},w_{i})}{\text{maximize}} & \sum_{i=1}^{N} y_{i,0} + \langle \bar{\boldsymbol{g}}_{i},\boldsymbol{y}_{i} \rangle \\ \text{subject to} & y_{i,0} + \langle \boldsymbol{g}_{i}(\boldsymbol{x}),\boldsymbol{y}_{i} \rangle + \langle \boldsymbol{h}(\boldsymbol{z}),\boldsymbol{w}_{i} \rangle \leq c_{i}(\boldsymbol{x},\boldsymbol{z}) \qquad \forall (\boldsymbol{x},\boldsymbol{z}) \in \mathcal{X}_{i} \times \mathcal{Z}, \forall 1 \leq i \leq N, \qquad (\mathsf{MT}^{*}_{\mathsf{par}}) \\ & \sum_{i=1}^{N} \boldsymbol{w}_{i} = \boldsymbol{0}. \end{array}$$

Duality results

 (MT*par) is a linear semi-infinite programming (LSIP) problem and admits the following dual optimization problem:

$$\begin{array}{ll} \underset{(\theta_i)}{\text{minimize}} & \sum_{i=1}^{N} \int_{\mathcal{X}_i \times \mathcal{Z}} c_i \, \mathrm{d}\theta_i \\ \text{subject to} & \theta_i \in \Gamma(\bar{\mu}_i, \bar{\nu}_i) & \forall 1 \leq i \leq N, \\ & \bar{\mu}_i \stackrel{\mathcal{G}_i}{\sim} \mu_i & \forall 1 \leq i \leq N, \\ & \bar{\nu}_i \stackrel{\mathcal{H}}{\sim} \bar{\nu}_1 & \forall 1 \leq i \leq N. \end{array}$$

Strong duality can be established via classical LSIP theory [Goberna and López 1998].

Theorem (Strong duality)

The strong duality between (MT_{par}^{\ast}) and (MT_{par}) holds, i.e., the optimal values of (MT_{par}^{\ast}) and (MT_{par}) are identical.

Computational complexity

The theoretical computational complexity of (MT^{*}_{par}) and (MT_{par}) can be analyzed through the volumetric center method of Vaidya [1996] in terms of the global minimization oracle defined as follows.

Definition (Global minimization oracle)

 $Oracle(i, y_i, w_i)$ solves the global minimization problem:

$$\min_{\boldsymbol{x}, \boldsymbol{z}) \in \mathcal{X}_i \times \mathcal{Z}} \left\{ c_i(\boldsymbol{x}, \boldsymbol{z}) - \langle \boldsymbol{g}_i(\boldsymbol{x}), \boldsymbol{y}_i \rangle - \langle \boldsymbol{h}(\boldsymbol{z}), \boldsymbol{w}_i \rangle \right\}$$

and returns an optimizer (x^*, z^*) and the optimal value β^* with computational cost *T*. (Note that *T* does not depend on *N*.)

• Intuition: Oracle determines the "most violated" constraint.

Computational complexity

Theorem (Computational complexity)

Let $m := \sum_{i=1}^{N} m_i = \sum_{i=1}^{N} |\mathcal{G}_i|$, $k := |\mathcal{H}|$. Then, in the Euclidean case (i.e., when $\mathcal{X}_1, \ldots, \mathcal{X}_N, \mathcal{Z}$ are all Euclidean),

- the computational complexity of computing an ϵ -optimizer of (MT_{par}^*) is $O((m + Nk)\log((m + Nk)/\epsilon)(NT + (m + Nk)^{\omega}));$
- 2 the computational complexity of computing a pair of ϵ -optimizers of (MT_{par}^*) and (MT_{par}) is polynomial in N, m, k, T, and $\log(\frac{1}{\epsilon})$.

 $O(m^{\omega})$ is the computational complexity of the multiplication of two $m \times m$ matrices.

• We also derive the theoretical computational complexity in the general non-Euclidean case.

Construction of approximate matching equilibrium

- Given: approx. optimizer $(\hat{\theta}_i)_{i=1:N}$ of $(\mathsf{MT}_{\mathsf{par}})$, approx. optimizer $(\hat{y}_{i,0}, \hat{y}_i, \hat{w}_i)_{i=1:N}$ of $(\mathsf{MT}_{\mathsf{par}})$.
- Construction of approximate optimizer of (MT*):
 - for $i = 1, \ldots, N-1$, $\tilde{\varphi}_i(z) := \inf_{x \in \mathcal{X}_i} \left\{ c_i(x, z) \hat{y}_{i,0} \langle g_i(x), \hat{y}_i \rangle \right\} \tilde{\varphi}_{i,0}$, where $\tilde{\varphi}_{i,0} := \inf_{x \in \mathcal{X}_i} \left\{ c_i(x, z_0) - \hat{y}_{i,0} - \langle g_i(x), \hat{y}_i \rangle \right\} - \tilde{\varphi}_{i,0}$ for some point $z_0 \in \mathcal{Z}$;
 - $\tilde{\varphi}_N(z) := -\sum_{i=1}^{N-1} \tilde{\varphi}_i(z).$
- Construction of approximate optimizer of (MT) via gluing:
 - step 1: for i = 1,...,N, glue θ̂_i ∈ Γ(μ̂_i, ν̂_i) with a W₁-optimal coupling η̂_i ∈ Γ(μ̂_i, μ_i) and a W₁-optimal coupling ρ̂_i ∈ Γ(ν̂_i, ν̂₁) to get γ̂_i ∈ Γ(μ_i, ν̂₁);
 - step 2: glue $\hat{\gamma}_1 \in \Gamma(\mu_1, \hat{\nu}_1), \dots, \hat{\gamma}_N \in \Gamma(\mu_N, \hat{\nu}_1)$ together to get $\tilde{\mu} \in \Gamma(\mu_1, \dots, \mu_N)$;
 - step 3: let $\tilde{\nu} := \tilde{z} \sharp \tilde{\mu}$, and let $\tilde{\gamma}_i := (\text{proj}_i, \tilde{z}) \sharp \tilde{\mu}$ for $i = 1, \dots, N$, where

$$\tilde{z}(x_1,\ldots,x_N) \in \arg\min_{z\in\mathcal{Z}}\left\{\sum_{i=1}^N c_i(x_i,z)\right\}.$$

$$\hat{\rho}_{N} \begin{pmatrix} \hat{\nu}_{1} & \stackrel{\hat{\theta}_{1}}{\longrightarrow} & \hat{\mu}_{1} & \stackrel{\hat{\eta}_{1}}{\longrightarrow} & \mu_{1} \\ \hat{\nu}_{2} & \stackrel{\hat{\theta}_{2}}{\longrightarrow} & \hat{\mu}_{2} & \stackrel{\hat{\eta}_{2}}{\longrightarrow} & \mu_{2} \\ \vdots & \vdots & \vdots \\ \hat{\nu}_{N} & \stackrel{\hat{\theta}_{N}}{\longrightarrow} & \hat{\mu}_{N} & \stackrel{\hat{\eta}_{N}}{\longrightarrow} & \mu_{N} & \stackrel{\hat{\gamma}_{N}}{\longrightarrow} \end{pmatrix} \begin{pmatrix} \tilde{\gamma}_{1} \\ \mu_{2} \\ \vdots \\ \mu_{N} & \stackrel{\hat{\gamma}_{2}}{\longrightarrow} & \tilde{\nu} \\ \vdots \\ \mu_{N} & \stackrel{\hat{\gamma}_{N}}{\longrightarrow} & \mu_{N} & \mu_{N} & \mu_{N} & \mu_{N} & \mu_{N} \end{pmatrix}$$

Construction of approximate matching equilibrium

Theorem (Approximate matching equilibrium)

Suppose that:

• c_i is L_c -Lipschitz continuous for i = 1, ..., N;

• $\epsilon_0 := \left(\sum_{i=1}^N \int_{\mathcal{X}_i \times \mathcal{Z}} c_i \, \mathrm{d}\hat{\theta}_i\right) - \left(\sum_{i=1}^N \hat{y}_{i,0} + \langle \bar{g}_i, \hat{y}_i \rangle\right)$, *i.e.*, duality gap when solving (MT_{par}) and (MT^{*}_{par}).

•
$$\epsilon := \epsilon_0 + L_c \left(\sum_{i=1}^N \sup_{\substack{\mu'_i \sim \mu_i}} \left\{ W_1(\mu_i, \hat{\mu}_i) \right\} + \sup_{\nu \sim \nu'} \left\{ W_1(\nu, \nu') \right\} \right).$$

Then, the constructed $\tilde{\nu}$, $(\tilde{\gamma}_i)_{i=1:N}$, and $(\tilde{\varphi}_i)_{i=1:N}$ satisfy:

- $\tilde{\nu}$ is an ϵ -optimizer of (MT);
- or i = 1, ..., N, $\tilde{\gamma}_i \in \Gamma(\mu_i, \tilde{\nu})$ and $\int_{\mathcal{X}_i \times \mathcal{Z}} c_i d\tilde{\gamma}_i \leq W_{c_i}(\mu_i, \tilde{\nu}) + \epsilon$.
- ($\tilde{\varphi}_i$)_{*i*=1:N} is an ϵ -optimizer of (MT^{*});

Such $((\tilde{\varphi}_i)_{i=1:N}, \tilde{\nu}, (\tilde{\gamma}_i)_{i=1:N})$ is called an ϵ -approximate matching equilibrium.

Convergence to true matching equilibrium

Corollary (Convergence to true matching equilibrium)

 $\textit{Let}\left((\tilde{\varphi}_{i}^{(l)})_{i=1:N},\tilde{\nu}^{(l)},(\tilde{\gamma}_{i}^{(l)})_{i=1:N}\right)\textit{ be an }\epsilon^{(l)}\textit{-approx. matching equilibrium with }\lim_{l\to\infty}\epsilon^{(l)}=0. \textit{ Then:}$

- $(\tilde{\varphi}_i^{(l)})_{l \in \mathbb{N}}$ has at least one accumulation point in $(\mathcal{C}(\mathcal{Z}), \|\cdot\|_{\infty})$ for i = 1, ..., N;
- $(\tilde{\nu}^{(l)})_{l \in \mathbb{N}}$ has at least one accumulation point in $(\mathcal{P}(\mathcal{Z}), W_1)$;
- $(\tilde{\gamma}_i^{(l)})_{l \in \mathbb{N}}$ has at least one accumulation point in $(\mathcal{P}(\mathcal{X}_i \times \mathcal{Z}), W_1)$ for i = 1, ..., N.

If
$$\tilde{\varphi}_{i}^{(l_{t})} \xrightarrow[t \to \infty]{\text{unif}} \tilde{\varphi}_{i}^{(\infty)} \forall 1 \leq i \leq N, \quad \tilde{\nu}^{(l_{t})} \xrightarrow[t \to \infty]{\text{w}_{1}} \tilde{\nu}^{(\infty)}, \quad \text{and } \tilde{\gamma}_{i}^{(l_{t})} \xrightarrow[t \to \infty]{\text{w}_{1}} \tilde{\gamma}_{i}^{(\infty)} \forall 1 \leq i \leq N,$$

then $\left((\tilde{\varphi}_{i}^{(\infty)})_{i=1:N}, \tilde{\nu}^{(\infty)}, (\tilde{\gamma}_{i}^{(\infty)})_{i=1:N}\right)$ is a matching equilibrium.

• In the Euclidean case, we can explicitly construct continuous piece-wise affine basis functions $G_1, \ldots, G_N, \mathcal{H}$ to control the approximation error ϵ to be arbitrarily close to 0.

Numerical algorithm

- We first develop a **cutting-plane algorithm** for computing an approximate optimizer $(\hat{\theta}_i)_{i=1:N}$ of $(\mathsf{MT}_{\mathsf{par}})$ and an approximate optimizer $(\hat{y}_{i,0}, \hat{y}_i, \hat{w}_i)_{i=1:N}$ of $(\mathsf{MT}_{\mathsf{par}}^*)$.
- We then develop an **algorithm for computing an approximate matching equilibrium** via constructing random variables on a probability space, with the following properties.

Theorem (Matching for teams algorithm)

Under suitable conditions, for any $\epsilon > 0$, the proposed algorithm produces outputs $(\tilde{\varphi}_i)_{i=1:N}, \tilde{\nu}, (\tilde{\gamma}_i)_{i=1:N}, \alpha^{\text{LB}}, \alpha^{\text{UB}}, \text{ and } \epsilon_{\text{sub}}$ satisfying:

•
$$\alpha^{\mathsf{LB}} \leq (\mathsf{MT}^*) = (\mathsf{MT}) \leq \alpha^{\mathsf{UB}} \text{ and } \epsilon_{\mathsf{sub}} := \alpha^{\mathsf{UB}} - \alpha^{\mathsf{LB}} \leq \epsilon \text{ (typically } \epsilon_{\mathsf{sub}} \ll \epsilon \text{ in practice});$$

- 2) $\tilde{\nu}$ is an ϵ_{sub} -optimizer of (MT);
- So for i = 1,..., N, $\tilde{\gamma}_i \in \Gamma(\mu_i, \tilde{\nu})$ and $\int_{\mathcal{X}_i \times \mathcal{Z}} c_i d\tilde{\gamma}_i ≤ W_{c_i}(\mu_i, \tilde{\nu}) + \epsilon_{sub}$.

• $(\tilde{\varphi}_i)_{i=1:N}$ is an ϵ_{sub} -optimizer of (MT^{*}); In particular, $((\tilde{\varphi}_i)_{i=1:N}, \tilde{\nu}, (\tilde{\gamma}_i)_{i=1:N})$ form an ϵ_{sub} -approximate matching equilibrium.

Experiment 1: business locations

- Settings:
 - N = 5; the city has a railway line with 5 stations;
 - commuting costs:

$$c_{i}(\boldsymbol{x},\boldsymbol{z}) := \min \left\{ \underbrace{\|\boldsymbol{x} - \boldsymbol{z}\|_{1}}_{\text{walk from home to workplace}}, \min_{1 \le j,k \le 5} \left\{ \underbrace{\|\boldsymbol{x} - \boldsymbol{u}_{j}\|_{1}}_{\text{walk from home to station } j} + \underbrace{C_{j,k}}_{\text{take train from } k} + \underbrace{\|\boldsymbol{u}_{k} - \boldsymbol{z}\|_{1}}_{\text{to walk from station } k} \right\} \right\};$$

• restocking cost:
$$c_N(x,z) := \|x-z\|_1$$
.

Experiment 1: business locations

• Computed bounds α^{LB} , α^{UB} and sub-optimality estimates ϵ_{sub} :

Qikun Xiang (NTU Singapore)

Numerical results

• Computed approximate matching equilibrium:

Experiment 2: Wasserstein barycenter

Settings:

• We compute the Wasserstein barycenter of N = 20 probability measures.

ECSO-CMS 2024

Experiment 2: Wasserstein barycenter

• Computed bounds α^{LB} , α^{UB} and sub-optimality estimates ϵ_{sub} :

• Computed approximate Wasserstein barycenters:

Qikun Xiang (NTU Singapore)

ECSO-CMS 2024

Conclusion

Conclusion

• Theoretical contributions:

- Development of a parametric approximation scheme (MT^{*}_{par}) of (MT^{*}).
- Derivation of duality results for (MT_{par}) and its dual optimization problem (MT_{par}).
- Analysis of the theoretical computational complexity of (MT*par) and (MTpar).
- Construction of ϵ -optimizers of (MT) and (MT^{*}) (referred to as ϵ -approximate matching equilibrium), and showing their convergence to a true matching equilibrium.
- Explicit construction of (MT^*_{par}) to control the approximation error.

Numerical method:

- Development of a numerical algorithm which can compute ϵ_0 -optimizers of (MT_{par}) and (MT^{*}_{par}) for any $\epsilon_0 > 0$.
- Development of a numerical algorithm which can compute an ϵ -approximate matching equilibrium as well as lower and upper bounds $\alpha^{LB} \leq (MT^*) = (MT) \leq \alpha^{UB}$ with $\alpha^{UB} \alpha^{LB} \leq \epsilon$ for any $\epsilon > 0$.
- Application to the business location distribution problem and the Wasserstein barycenter problem.

- A. Neufeld and Q. Xiang. Feasible approximation of matching equilibria for large-scale matching for teams problems. *Preprint, arXiv:2308.03550*, 2023. URL: https://arxiv.org/abs/2308.03550
- **2** G. Carlier and I. Ekeland. Matching for teams. *Economic Theory*, 42(2):397–418, 2010.
- M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43(2): 904–924, 2011.
- 9 M. A. Goberna and M. A. López. *Linear semi-infinite optimization*. John Wiley & Sons, 1998.
- P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. *Math. Program.*, 73(3):291–341, 1996.