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ABSTRACT. We propose a numerical algorithm for computing approximately optimal solutions of
the matching for teams problem. Our algorithm is efficient for problems involving large number of
agent categories and allows for non-discrete agent type measures. Specifically, we parametrize the so-
called transfer functions and develop a parametric version of the dual formulation, which we tackle
to produce feasible and approximately optimal solutions for the primal and dual formulations. These
solutions yield upper and lower bounds for the optimal value, and the difference between these bounds
provides a direct sub-optimality estimate of the computed solutions. Moreover, we are able to control
the sub-optimality to be arbitrarily close to 0. We subsequently prove that the approximate primal and
dual solutions converge when the sub-optimality goes to 0 and their limits constitute a true matching
equilibrium. Thus, the outputs of our algorithm are regarded as an approximate matching equilib-
rium. We also analyze the theoretical computational complexity of our parametric formulation as well
as the sparsity of the resulting approximate matching equilibrium. In the numerical experiments, we
study three matching for teams problems: a problem of business location distribution, the well-known
2-Wasserstein barycenter problem, and a high-dimensional problem involving 100 agent categories.
Through the numerical results, we showcase that the proposed algorithm can produce high-quality ap-
proximate matching equilibria in these settings, provide quantitative insights about the optimal city
structure in the business location distribution problem, and that the sub-optimality estimates computed
by our algorithm are much less conservative than theoretical estimates.

1. INTRODUCTION

The goal of this paper is to provide an algorithm which constructs approximately optimal solu-
tions of the matching for teams problem in theoretical economics involving a large number of agent
categories. The matching for teams problem was introduced by Carlier and Ekeland [21], and the
setting is described as follows.

Assumption 1.1 (Matching for teams [21, Section 2.4]). We make the following assumptions:
(A1) for i = 1, . . . , N (where N ∈ N), (Xi, dXi) is a compact metric space (with metric dXi) and

X := X1 × · · · × XN ;
(A2) (Z, dZ) is a compact metric space;
(A3) for i = 1, . . . , N , µi ∈ P(Xi) is a probability measure on Xi;
(A4) for i = 1, . . . , N , ci : Xi ×Z → R is continuous.

Using the terminologies of Carlier and Ekeland [21], the matching for teams problem describes
an economic game involving N categories of agents (e.g., one category of consumer and N − 1
categories of different producers), where the number of agents in each category is infinite. The spaces
X1, . . . ,XN , referred to as type spaces, each represents the types of agents from a category. The
space Z , referred to as the quality space, represents a type of indivisible good with various qualities.
In category i, the distribution of agent types is characterized by the probability measure µi ∈ P(Xi).
Moreover, the function ci(xi, z) represents the cost for an agent with type xi ∈ Xi to be matched to
a unit of good with quality z ∈ Z . In order for a unit of good with quality z ∈ Z to be traded, one
agent from each category must come together to form a team and exchange money within the team.
The goal is to find a matching equilibrium defined as follows.
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Definition 1.2 (Matching equilibrium [21, Definition 1]). Let Assumption 1.1 hold. A matching equi-
librium consists of continuous functions φ1, . . . , φN : Z → R, probability measures γ1, . . . , γN ∈
P(Xi ×Z), and a probability measure ν ∈ P(Z) such that:

(ME1) for i = 1, . . . , N , γi ∈ Γ(µi, ν), where Γ(µi, ν) denotes the set of couplings of µi and ν,
i.e., Γ(µi, ν) contains all probability measures on Xi × Z whose marginals on Xi and Z
are µi and ν;

(ME2)
∑N

i=1 φi(z) = 0 for all z ∈ Z;
(ME3) for i = 1, . . . , N , φci

i (xi) + φi(z) = ci(xi, z) for γi-almost all (xi, z) ∈ Xi × Z , where
φci
i : Xi → R is called the ci-transform of φi and is defined by

φci
i (xi) := inf

z∈Z

{
ci(xi, z)− φi(z)

}
∀xi ∈ Xi.

In Definition 1.2, φi(z) represents the amount of money received by an agent of category i when
trading a unit of good with quality z ∈ Z , ν ∈ P(Z) represents the distribution of the qualities
of traded goods, and for i = 1, . . . , N , γi ∈ Γ(µi, ν) describes the matching between agents of
category i and qualities of traded goods. The condition (ME1) ensures that every agent is matched
to some good. The condition (ME2) is called the balance condition as it requires each team to be
self-financed, e.g., all money paid by the consumers will be transferred to the producers. The condi-
tion (ME3) requires that an agent of type xi ∈ Xi is matched to a unit of good with quality z only
if z minimizes the net cost, i.e., z ∈ argminz′∈Z

{
ci(xi, z

′)− φi(z
′)
}

. In the following, we present
two concrete applications of the matching for teams problem that we will analyze in this paper.

Application 1.3 (Equilibrium of business location distribution). Let us consider the study of the
geographic distribution of a type of business in a city by modeling the locations of business outlets as
well as the employees’ workplace choices as a game involvingN agent populations. In this game, the
firstN−1 agent populations representN−1 categories of employees and theN -th agent population
represents the business owners. Specifically, the set Z ⊂ R2 represents the locations (in longitude
and latitude) in the city where business outlets could possibly be located at. For i = 1, . . . , N−1, the
set Xi ⊂ R2 represents the locations in the city where the i-th category of employees can reside and
µi ∈ P(Xi) represents the distribution of the dwellings of the i-th category of employees. The set XN

represents the possible locations of the suppliers of the business in the city and µN ∈ P(XN ) denotes
their geographic distribution. Moreover, for i = 1, . . . , N − 1, the cost function ci(·, ·) represents
the commuting cost of the i-th category of employees, i.e., ci(xi, z) denotes the cost of commuting
from an employee’s home located at xi ∈ Xi to a business outlet located at z ∈ Z . Furthermore, the
cost function cN : XN × Z → R represents the restocking cost of a business outlet, i.e., cN (xN , z)
denotes the cost of transporting goods from a supplier located at xN ∈ XN to a business outlet
located at z ∈ Z .

Under this setting, we are interested in finding a matching equilibrium (φi : Z → R)i=1:N ,(
γi ∈ P(Xi ×Z)

)
i=1:N

, and ν ∈ P(Z). For i = 1, . . . , N − 1, φi(z) denotes the amount of salary
earned by an employee working at a business outlet located at z ∈ Z . φN (z) denotes the negative
of the total amount of salary paid out by a business outlet located at z ∈ Z to the N − 1 categories
of employees. ν ∈ P(Z) describes the geographic distribution of the business outlets in the city
and γN ∈ P(XN × Z) describes how the business outlets choose the suppliers to restock from.
Moreover, for i = 1, . . . , N − 1, γi ∈ P(Xi×Z) describes where the employees in the i-th category
choose to work at depending on where they reside. At equilibrium, the condition γi ∈ Γ(µi, ν)
for i = 1, . . . , N − 1 requires each employee to work at some business outlet, and the condition
γN ∈ Γ(µN , ν) requires each supplier to be supplying some business outlet. The balance condition∑N

i=1 φi(z) = 0 for all z ∈ Z ensures that the total amount of salary paid out by each business
owner, i.e., −φN (z), is equal to the total amount of salary received by the N − 1 categories of
employees, i.e.,

∑N−1
i=1 φi(z). Finally, for i = 1, . . . , N , the condition φci

i (xi) + φi(z) = ci(xi, z)
for γi-almost all (xi, z) ∈ Xi × Z states that each employee acts rationally when choosing the
workplace, i.e., an employee that resides at xi minimizes the commuting cost ci(xi, z) minus the
salary φi(z) when deciding the workplace, and each business owner acts rationally when choosing
the location of the business outlet, i.e., a business owner that restocks from a supplier at xN minimizes



FEASIBLE APPROXIMATION FOR LARGE-SCALE MATCHING FOR TEAMS PROBLEMS 3

the cost cN (xN , z) of transporting goods plus the total salary−φN (z) paid out to the employees. In
this application, the computation of matching equilibria can not only aid the business owners when
choosing the locations of business outlets, but also help city planners to improve transportation
efficiency in the city.

Application 1.4 (p-Wasserstein barycenter [1]). When X1 = . . . = XN = Z and ci(x, z) :=

λidZ(x, z)
p for i = 1, . . . , N where p ∈ [1,∞), λi > 0, and

∑N
i=1 λi = 1, an optimizer of (MT)

is known as a barycenter of µ1, . . . , µN ∈ P(Z) in the Wasserstein space of order p with weights
λ1, . . . , λN . The most widely studied setting is the 2-Wasserstein barycenter problem, where X1 =
. . . = XN = Z ⊂ Rd and ci(x, z) := λi∥x − z∥22. In recent years, Wasserstein barycenters have
found widespread applications in a variety of fields, including statistical inference [13, 50, 62, 63],
unsupervised clustering [57, 72, 73], pattern recognition [65], texture mixing [58], color transfer
[45, 48], shape interpolation [61, 69], etc.

In the following, for i = 1, . . . , N , and for µi ∈ P(Xi), ν ∈ P(Z), let Wci(µi, ν) denote the
optimal transportation cost between µi and ν under the cost function ci(·, ·), i.e.,

Wci(µi, ν) := inf
γi∈Γ(µi,ν)

{∫
Xi×Z

ci(x, z) γi(dx,dz)

}
.

Carlier and Ekeland [21] have proved the existence of matching equilibria and characterized them
via three optimization problems, as detailed below.

Theorem 1.5 (Existence and characterization of matching equilibria [21, Section 4.2 & Proposition 1
& Theorem 3]). Let Assumption 1.1 hold. Then, the following statements hold.

(i) There exist continuous functions φ̃1, . . . , φ̃N : Z → R, probability measures γ̃1, . . . , γ̃N ∈
P(Xi ×Z), and a probability measure ν̃ ∈ P(Z) that constitute a matching equilibrium.

(ii) (φ̃i)i=1:N , (γ̃i)i=1:N , and ν̃ are a matching equilibrium if and only if (ME1’)–(ME3’) below
hold:

(ME1’) ν̃ is an optimizer of the following problem:

inf
ν∈P(Z)

{
N∑
i=1

Wci(µi, ν)

}
; (MT)

(ME2’) (φ̃i)i=1:N is an optimizer of the following problem:

sup

{
N∑
i=1

∫
Xi

φci
i dµi : (φi)i=1:N are continuous,

N∑
i=1

φi = 0

}
; (MT∗)

(ME3’) for i = 1, . . . , N , γ̃i is an optimizer of the following problem:

inf
γi∈Γ(µi,ν̃)

{∫
Xi×Z

ci(x, z) γi(dx,dz)

}
. (MTcp)

(iii) (MT) and (MT∗) have identical optimal values.

Our objective is to develop a numerical algorithm for efficiently computing feasible and approx-
imately optimal solutions of the problems (MT), (MT∗), and (MTcp) when the number N of agent
categories is large, and to apply it to the concrete applications discussed above. Moreover, we will
show that the computed approximate optimizers, which are referred to as an approximate matching
equilibrium, converge to a true matching equilibrium when their sub-optimality goes to 0.

Related work. It is well-known that the problem (MT) admits an equivalent multi-marginal optimal
transport (MMOT) reformulation, which has been discussed by Carlier and Ekeland [21, Section 6].
There are numerous existing studies about the computation of MMOT and related problems. Many of
these studies either only consider discrete measures (see, e.g., [5, 8, 10, 38, 51, 66]) or approximate
the problems via discretization of non-discrete measures (see, e.g., [36, 41]). Some studies develop
regularization-based methods for approximating MMOT and related problems involving non-discrete
measures. These methods typically involve solving an infinite-dimensional optimization problem
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parametrized by deep neural networks; see, e.g., [30, 31, 33, 35, 44]. See also [29, 34, 55] for the
theoretical properties of entropic regularization and the Sinkhorn algorithm. One downside of neural
network based methods is the challenge posed by the non-convexity of the objective function when
training neural networks, and there is hence no theoretical guarantee on the quality of the approx-
imate solutions represented by trained neural networks. Recently, Alfonsi, Coyaud, Ehrlacher, and
Lombardi [2] and Neufeld and Xiang [54] developed approximation schemes for MMOT problems
via relaxation of the marginal constraints into finitely many linear constraints. In particular, Neufeld
and Xiang [54] developed a numerical algorithm which is capable of constructing a feasible and ap-
proximately optimal solution of the MMOT problem and computing a sub-optimality estimate of the
constructed solution. Our numerical approach, however, is tailored to the structure of the problems
(MT), (MT∗), and (MTcp) without relying on the MMOT formulation.

We would like to point out some existing studies about equilibrium/optimal spatial structure de-
scribed by measures that are similar to Application 1.3. Lucas and Rossi-Hansberg [52] and Carlier
and Ekeland [20] studied the equilibrium structure of a city by analyzing the equilibrium distribu-
tion of business and residential districts while considering the positive externality of labor. Buttazzo
and Santambrogio [19] and Carlier and Santambrogio [22] considered the optimal structure of a
city rather than the equilibrium structure, when taking the congestion effect into account. Blanchet
and Carlier [14] analyzed the spatial equilibrium of agents’ preferences for land in an economy.
Blanchet, Mossay, and Santambrogio [15] used the notion of Cournot–Nash equilibrium to model
agents’ choices of holiday destinations. Besbes, Castro, and Lobel [12] modeled the equilibrium in
the interaction between drivers and customers in a ride-hailing platform.

The 2-Wasserstein barycenter problem has recently become a highly active research area due to
its widespread applications discussed in Application 1.4. Most studies about the computation of
Wasserstein barycenter focus on the case where µ1, . . . , µN are discrete measures with finite support;
see, e.g., [3, 4, 7, 16–18, 39, 43, 57, 69–71]. Some notable theoretical results about the computation
of discrete 2-Wasserstein barycenter are listed below.
• There exists a sparsely supported 2-Wasserstein barycenter ν̂ of µ1, . . . , µN with |supp(ν̂)| ≤∑N

i=1 |supp(µi)| − N + 1 (where supp(·) denotes the support of a probability measure); see,
e.g., [16, Proposition 1].
• Altschuler and Boix-Adserà [3] showed that there exists a polynomial-time algorithm for the

exact computation of discrete 2-Wasserstein barycenter in any fixed dimensions.
• Altschuler and Boix-Adserà [4] showed that the exact computation of discrete 2-Wasserstein

barycenter is NP-hard in the dimension of the underlying space Z .
Chizat [25], Luise, Salzo, Pontil, and Ciliberto [53], and Xie, Wang, Wang, and Zha [70] have

developed regularization-based methods for approximating discrete 2-Wasserstein barycenter. More-
over, there are also numerical methods for computing 2-Wasserstein barycenter when µ1, . . . , µN
are continuous. Some of these methods are only applicable to specific families of probability mea-
sures, such as Gaussian or the location-scatter family; see, e.g., [6, 24]. Some studies consider
the case where the measures µ1, . . . , µN are unknown with sample access, and develop stochas-
tic optimization algorithms for approximating a 2-Wasserstein barycenter with fixed support; see,
e.g., [26, 47, 64, 74]. Recently, numerical methods for continuous 2-Wasserstein barycenter based
on neural network parametrization or generative neural networks have been developed; see, e.g.,
[27, 37, 45, 46, 50]. These methods also suffer from the aforementioned downside of neural network
based methods due to the non-convexity of the training objective, posing challenges to the subsequent
theoretical analyses.

Carlier, Oberman, and Oudet [23] proposed a numerical method for (MT) with general cost func-
tions c1, . . . , cN . After discretizing the underlying spaces X1, . . . ,XN ,Z , they developed a linear
programming approximation of (MT) where the number of decision variables scales linearly with
the number N of agent categories. They subsequently proved the convergence of their computed
approximate optimizers to an optimizer of (MT). By discretizing X1, . . . ,XN ,Z , Carlier et al. [23]
also developed another numerical method for approximating (MT∗) in the 2-Wasserstein barycenter
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case by a non-smooth concave maximization problem. From an optimizer of this non-smooth con-
cave maximization problem, they were able to reconstruct an approximate optimizer of (MT) whose
support lies in a pre-specified finite set based on the discretization of Z .

Compared to existing methods for the computation of matching for teams and p-Wasserstein
barycenter, our numerical approach is applicable to general cost functions c1, . . . , cN as well as
general probability measures µ1, . . . , µN that are not necessarily discrete and not restricted to any
family of measures. The approximate optimizers of (MT) constructed through our approach do not
have pre-specified support. Thus, our approach belongs to the so-called free support approaches.
When the measures µ1, . . . , µN are non-discrete, our approach produces two approximate optimiz-
ers of (MT): one is a discrete measure with sparse support, and the other is a (possibly) non-discrete
measure. Moreover, our approach simultaneously constructs feasible and approximately optimal so-
lutions of (MT), (MT∗), and (MTcp). The feasibility of these solutions provides us with upper and
lower bounds for the optimal value of (MT) and (MT∗) that can be computed by our numerical
algorithm. Most importantly, the difference between the computed upper and lower bounds corre-
sponds to a sub-optimality bound of the computed solutions that is often much less conservative than
sub-optimality bounds obtained through purely theoretical analyses. Furthermore, we also perform
analysis about the theoretical computational complexity of our approach as well as the sparsity of the
constructed discrete measure.

Contributions and outline of the paper. Specifically, this paper makes the following contributions.
(1) We introduce a parametric formulation of matching for teams that is a linear semi-infinite pro-

gramming (LSIP) problem. We show that one can construct feasible approximate optimizers of
the problems (MT), (MT∗), and (MTcp) (which are referred to as approximate matching equi-
libria) from an approximate optimizer of the parametric formulation (see Theorem 2.13).

(2) We establish important theoretical results about the aforementioned LSIP problem and the con-
structed approximate matching equilibria, including:
• theoretical computational complexity of the LSIP problem and its dual (see Theorem 2.5),
• the existence of an approximate optimizer of (MT) with sparse support (see Corollary 2.14),
• the convergence of the constructed approximate matching equilibria to true matching equi-

libria (see Theorem 2.16),
• an explicit estimate for the “size” of the parametric formulation in order to control

the sub-optimality of the constructed approximate matching equilibria when the spaces
X1, . . . ,XN ,Z are compact subsets of Euclidean spaces (see Theorem 2.20).

(3) We develop a numerical algorithm that is able to compute ϵ-approximate matching equilibria
for any given ϵ > 0 and we analyze its convergence (see Theorem 3.7).

(4) We perform three numerical experiments on problems involving one- and two-dimensional type
spaces X1, . . . ,XN to demonstrate the performance of the proposed algorithm. In all three ex-
periments, we showcase that the sub-optimality bounds computed by our algorithm are much
less conservative compared to their purely theoretical bounds, which highlights a practical ad-
vantage of the proposed algorithm compared to existing methods for similar problems. Specif-
ically, in the first experiment, we examine an instance of the business location distribution
problem in Application 1.3 and we draw concrete insights as well as recommendations from
the computed approximate matching equilibria that can aid the city planners in improving the
ecomonic efficiency of the city. In the second experiment, we showcase the computation of ap-
proximate 2-Wasserstein barycenters (Application 1.4) via our algorithm. Moreover, in the third
experiment, we analyze the empirical computational cost of our algorithm and demonstrate that
it is capable of solving large problem instances with N = 100 agent categories.

The rest of this paper is organized as follows. Section 2 introduces the parametric formulation of
the matching for teams problem and the construction of approximate matching equilibria. In Sec-
tion 3, we present the details of the numerical algorithm that we develop as well as its properties. In
Section 4, we apply the developed algorithm to the three aforementioned matching for teams prob-
lems to demonstrate its performance in practice. The proof of the theoretical results can be found in
the appendix of the arXiv version of the paper at https://arxiv.org/abs/2308.03550.

https://arxiv.org/abs/2308.03550
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Notions and notations. Throughout this paper, all vectors are assumed to be column vectors. We
denote vectors and vector-valued functions by boldface symbols. In particular, for n ∈ N, we denote
by 0n the vector in Rn with all entries equal to 0, i.e., 0n := (0, . . . , 0︸ ︷︷ ︸

n times

)T. We also use 0 when the

dimension is unambiguous. We denote by ⟨·, ·⟩ the Euclidean dot product, i.e., ⟨x,y⟩ := xTy, and
we denote by ∥ · ∥p the p-norm of a vector for p ∈ [1,∞]. A subset of a Euclidean space is called
a polyhedron or a polyhedral convex set if it is the intersection of finitely many closed half-spaces.
In particular, a subset of a Euclidean space is called a polytope if it is a bounded polyhedron. For a
subset A of a Euclidean space, let aff(A), conv(A), cone(A) denote the affine hull, convex hull, and
conic hull of A, respectively. Moreover, let cl(A), int(A), relint(A), relbd(A) denote the closure,
interior, relative interior, and relative boundary of A, respectively.

For a Polish space (Y, dY) with its corresponding metric dY(·, ·), letB(Y) denote the Borel subsets
of Y and let P(Y) denote the set of Borel probability measures on Y . We denote by δy the Dirac
measure at any y ∈ Y and we denote by supp(µ) the support of any probability measure µ ∈ P(Y).
Moreover, we denote by C(Y) the set of all continuous functions on Y and we denote by L1(Y, µ)
the set of µ-integrable functions on Y with respect to a probability measure µ ∈ P(Y). Furthermore,
we use Γ(·, . . . , ·) to denote the set of couplings of measures, i.e., the set of measures with fixed
marginals, as detailed in the following definition.

Definition 1.6 (Coupling). Form ∈ N Polish spaces (Y1, dY1), . . . , (Ym, dYm) and probability mea-
sures ν1 ∈ P(Y1), . . ., νm ∈ P(Ym), let Γ(ν1, . . . , νm) denote the set of couplings of ν1, . . . , νm,
defined as

Γ(ν1, . . . , νm) :=
{
γ ∈ P(Y1 × · · · × Ym) : the marginal of γ on Yj is νj for j = 1, . . . ,m

}
.

For any µ, ν ∈ P(Y), let W1(µ, ν) denote the Wasserstein metric of order 1 between µ and ν,
which is given by

W1(µ, ν) := inf
γ∈Γ(µ,ν)

{∫
Y×Y

dY(x, y) γ(dx,dy)

}
.

2. APPROXIMATION OF MATCHING FOR TEAMS

In this section, we develop a parametric version of the problem (MT∗) by parametrizing the trans-
fer functions (φi)i=1:N . Specifically, for i = 1, . . . , N , we consider a finite set Gi = {gi,1, . . . , gi,mi}
of mi ∈ N continuous functions on Xi, and we consider a finite set H = {h1, . . . , hk} of k ∈ N
continuous functions on Z . Subsequently, we parametrize (MT∗) by requiring the transfer functions
(φi)i=1:N to be linear combinations of H as well as requiring

∑N
i=1 φi = 0, and replacing the inte-

grand φci
i in the objective of (MT∗) with a function ψi : Xi → R which is a linear combination of Gi

plus a constant, for i = 1, . . . , N . By requiring that ψi(xi)+φi(z) ≤ ci(xi, z) for all (xi, z) ∈ Xi×Z
and i = 1, . . . , N , we guarantee that ψi ≤ φci

i for i = 1, . . . , N and thus this parametric version
of (MT∗) provides a lower bound for (MT∗). Through this parametric formulation, we reduce the
decision space of (MT∗) from infinite dimensional to finite dimensional, which results in a linear
semi-infinite programming (LSIP) problem.

In the following, Section 2.1 introduces the parametric formulation of (MT∗). In Section 2.2, we
establish the strong duality between the parametric formulation and its dual, which is a minimization
problem over probability measures subject to finitely many moment-based constraints. We analyze
the theoretical computational complexity of the parametric formulation and its dual in Section 2.3. In
Section 2.4, we construct approximate matching equilibria via approximate optimizers of the para-
metric formulation and its dual and show their convergence towards a matching equilibrium when
the approximation error goes to 0. Moreover, we discuss the existence of an approximate optimizer
of the dual of the parametric formulation which has sparse support. In Section 2.5, we consider the
case where the underlying spacesX1, . . . ,XN , andZ are all Euclidean, and we show that the approx-
imation error of our approach can be controlled to be arbitrarily close to 0 through explicit choices
of the functions G1, . . . ,GN ,H.
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2.1. The parametric formulation of matching for teams. We let Gi :=
{
gi,1, . . . , gi,mi

}
be a set

of mi ∈ N continuous R-valued functions on Xi, for i = 1, . . . , N , and we let H := {h1, . . . , hk}
be a set of k ∈ N continuous R-valued functions on Z . The precise choices of the functions
G1, . . . ,GN ,H will be specified later in Section 2.5. For notational simplicity, let the vector-valued
functions g1 : X1 → Rm1 , . . ., gN : XN → RmN , and h : Z → Rk be defined as

gi(xi) := (gi,1(xi), . . . , gi,mi(xi))
T ∀xi ∈ Xi, ∀1 ≤ i ≤ N, (2.1)

h(z) := (h1(z), . . . , hk(z))
T ∀z ∈ Z. (2.2)

Moreover, let the vectors ḡ1 ∈ Rm1 , . . ., ḡN ∈ RmN be defined as

ḡi :=
( ∫

Xi
gi,1 dµi, . . . ,

∫
Xi
gi,mi dµi

)T
∀1 ≤ i ≤ N. (2.3)

With these notations, the parametric formulation of (MT∗) is given by the following linear semi-
infinite programming (LSIP) problem:

maximize
(yi,0,yi,wi)

N∑
i=1

yi,0 + ⟨ḡi,yi⟩

subject to yi,0 + ⟨gi(xi),yi⟩+ ⟨h(zi),wi⟩ ≤ ci(xi, zi)
∀(xi, zi) ∈ Xi ×Z, ∀1 ≤ i ≤ N,

N∑
i=1

wi = 0k,

yi,0 ∈ R, yi ∈ Rmi , wi ∈ Rk ∀1 ≤ i ≤ N.

(MT∗
par)

In (MT∗
par), we have that ψi(·) := yi,0 + ⟨gi(·),yi⟩ and φi(·) := ⟨h(·),wi⟩ are both continuous for

i = 1, . . . , N . The semi-infinite inequality constraint in (MT∗
par) requires that ψi(xi) + φi(zi) ≤

ci(xi, zi) for all (xi, zi) ∈ Xi × Z , for i = 1, . . . , N . The equality constraint
∑N

i=1wi = 0k
guarantees that

∑N
i=1 φi = 0. Thus, one can observe that (MT∗

par) provides a lower bound for (MT∗).

2.2. Duality results. In this subsection, we derive the dual optimization problem of (MT∗
par). To

begin, let us first present the notion of moment sets.

Definition 2.1 (Moment set [54, Definition 2.7]). Let (Y, dY) be a compact metric space. For a
collection G of R-valued Borel measurable functions on Y , let P(Y;G) :=

{
µ ∈ P(Y) : G ⊆

L1(Y, µ)
}

. Let G∼ be defined as the following equivalence relation on P(Y;G): for all µ, ν ∈
P(Y;G),

µ
G∼ ν ⇔ ∀g ∈ G,

∫
Y
g dµ =

∫
Y
g dν. (2.4)

For every µ ∈ P(Y;G), let [µ]G :=
{
ν ∈ P(Y;G) : ν G∼ µ

}
be the equivalence class of µ under G∼.

We call [µ]G the moment set centered at µ characterized by test functions G. In addition, let Wµ,G
denote the supremum W1-metric between µ and members of [µ]G , and let W G denote the supremum

W1-metric between any two probability measures that are G∼-equivalent, i.e.,

Wµ,G := sup
ν∈[µ]G

{
W1(µ, ν)

}
, W G := sup

{
W1(ν, ν

′) : ν, ν ′ ∈ P(Y;G), ν G∼ ν ′
}
.

Note that Wµ,G ≤W G <∞ due to the compactness of Y .

The following theorem reveals that the dual optimization problem of (MT∗
par) is a relaxation of

(MT) through the moment-based equivalence relation (2.4). It also shows that the strong duality
holds.
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Theorem 2.2 (Strong duality). Let Assumption 1.1 hold. For i = 1, . . . , N , let mi ∈ N and let
Gi :=

{
gi,1, . . . , gi,mi

}
⊂ C(Xi). Let k ∈ N and letH := {h1, . . . , hk} ⊂ C(Z). Moreover, let gi(·),

h(·), and ḡi be given by (2.1), (2.2), and (2.3), respectively. Then, the optimal value of (MT∗
par) is

equal to the optimal value of the following optimization problem:

inf

{
N∑
i=1

∫
Xi×Z

ci dθi : θi ∈ Γ(µ̄i, ν̄i), µ̄i
Gi∼ µi, ν̄i

H∼ ν̄1 ∀1 ≤ i ≤ N

}
. (MTpar)

The following proposition provides sufficient conditions for the set of optimizers of (MT∗
par) to be

non-empty and bounded.

Proposition 2.3 (Optimizers of (MT∗
par)). Let Assumption 1.1 hold. For i = 1, . . . , N , let mi ∈ N

and let Gi :=
{
gi,1, . . . , gi,mi

}
⊂ C(Xi). Let k ∈ N and let H := {h1, . . . , hk} ⊂ C(Z). Moreover,

let gi(·), h(·), and ḡi be given by (2.1), (2.2), and (2.3), respectively. Then, the following statements
hold.

(i) If supp(µi) = Xi for i = 1, . . . , N , then the set of optimizers of (MT∗
par) is non-empty.

(ii) Suppose that, for i = 1, . . . , N , supp(µi) = Xi and that there exist mi + 1 points
xi,1, . . . , xi,mi+1∈ Xi such that the mi + 1 vectors gi(xi,1), . . . , gi(xi,mi+1) ∈ Rmi are
affinely independent. Moreover, suppose that there exist k + 1 points z1, . . . , zk+1 ∈ Z such
that the k + 1 vectors h(z1), . . . ,h(zk+1) ∈ Rk are affinely independent. Then, the set of
optimizers of (MT∗

par) is non-empty and bounded.

2.3. Theoretical computational complexity of (MT∗
par) and (MTpar). In this subsection, we ana-

lyze the theoretical computational complexity of the LSIP problem (MT∗
par) by viewing it as a so-

called convex feasibility problem. Subsequently, the theoretical computational complexity of (MTpar)
can also be analyzed. In our analysis, the theoretical computational complexity of (MT∗

par) and
(MTpar) is quantified in terms of the number of calls to an associated global minimization oracle
defined as follows.

Definition 2.4 (Global minimization oracle for (MT∗
par)). Let Assumption 1.1 hold. For i = 1, . . . , N ,

let mi ∈ N and Gi :=
{
gi,1, . . ., gi,mi

}
⊂ C(Xi). Let k ∈ N and let H := {h1, . . . , hk} ⊂

C(Z), where hl : Z → R is non-negative for l = 1, . . . , k. Moreover, let (gi : Xi → Rmi)i=1:N ,
h : Z → Rk, and (ḡi ∈ Rmi)i=1:N be defined in (2.1), (2.2), and (2.3). A procedure Oracle(·, ·, ·)
is called a global minimization oracle for (MT∗

par) if, for every i ∈ {1, . . . , N}, every yi ∈ Rmi ,
and every wi ∈ Rk, a call to Oracle(i,yi,wi) returns a minimizer (x⋆i , z

⋆
i ) ∈ Xi × Z of the

global minimization problem infxi∈Xi, zi∈Z
{
ci(xi, zi) − ⟨gi(xi),yi⟩ − ⟨h(zi),wi⟩

}
as well as its

corresponding objective value β⋆i := ci(x
⋆
i , z

⋆
i )− ⟨gi(x⋆i ),yi⟩ − ⟨h(z⋆i ),wi⟩.

The following theorem states that, under some mild conditions, there exists an algorithm for solv-
ing both (MT∗

par) and (MTpar) whose computational complexity is polynomial in N , m, k, and the
computational cost of each call to Oracle(·, ·, ·). In the theorem, we denote the computational com-
plexity of the multiplication of two m × m matrices by O(mω). For example, with the standard
matrix multiplication procedure, the computational complexity of this operation is O(m3). However,
it is known that ω < 2.376; see, e.g., [28].

Theorem 2.5 (Theoretical computational complexity of (MT∗
par) and (MTpar)). Let Assumption 1.1

hold. For i = 1, . . . , N , let mi ∈ N and Gi :=
{
gi,1, . . . , gi,mi

}
⊂ C(Xi). Let k ∈ N and

let H := {h1, . . . , hk} ⊂ C(Z), where hl : Z → R is non-negative for l = 1, . . . , k. Let
m :=

∑N
i=1mi and let (gi : Xi → Rmi)i=1:N , h : Z → Rk, and (ḡi ∈ Rmi)i=1:N be defined

in (2.1), (2.2), and (2.3). Let Oracle(·, ·, ·) be the global minimization oracle in Definition 2.4.
Suppose that1, for i = 1, . . . , N , ∥gi(xi)∥2 ≤ 1 for all xi ∈ Xi, and that ∥h(z)∥2 ≤ 1 for all

1Since Xi is compact and gi,1, . . . , gi,mi are continuous, one may replace gi,j by maxxi∈Xi

{
∥gi(xi)∥2

}−1
gi,j for

j = 1, . . . ,mi to guarantee that ∥gi(xi)∥2 ≤ 1 for all xi ∈ Xi. The same can be done to h1, . . . , hk to guarantee that
∥h(z)∥2 ≤ 1 for all z ∈ Z . Due to the linearity of the objective and the constraints of (MT∗

par), this rescaled version of
(MT∗

par) is equivalent to the original problem without rescaling.
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z ∈ Z . Moreover, suppose that (MT∗
par) has an optimizer (y⋆1,0,y

⋆T
1 ,w⋆T

1 , . . . , y⋆N,0,y
⋆T
N ,w⋆T

N )T

and let Mopt := ∥(y⋆1,0,y⋆T
1 ,w⋆T

1 , . . . , y⋆N,0,y
⋆T
N ,w⋆T

N )T∥2. Furthermore, let T denote the computa-
tional cost of each call to Oracle(·, ·, ·) and let ϵLSIP > 0 be an arbitrary positive tolerance value.
Then, the following statements hold.

(i) There exists an algorithm which computes an ϵLSIP-optimizer of (MT∗
par) with computational

complexity O
(
(m+Nk) log((m+Nk)Mopt/ϵLSIP)(NT + (m+Nk)ω)

)
.

(ii) Suppose that there existMmax > 0 and finite sets C1 ⊆ X1×Z, . . . , CN ⊆ XN×Z , such that
for every (y1,0,y

T
1 ,w

T
1 , . . . , yN,0,y

T
N ,w

T
N )T ∈ Rm+N(k+1) satisfying yi,0 + ⟨gi(xi),yi⟩ +

⟨h(zi),wi⟩ ≤ ci(xi, zi) ∀(xi, zi) ∈ Ci for i = 1, . . . , N ,
∑N

i=1wi = 0k, and
∑N

i=1 yi,0 +

⟨ḡi,yi⟩ ≥
∑N

i=1 y
⋆
i,0 + ⟨ḡi,y⋆

i ⟩, it holds that
∥∥(y1,0,yT

1 ,w
T
1 , . . . , yN,0,y

T
N ,w

T
N )T

∥∥
2
≤

Mmax. Let poly
(
N,m, k, log

(
Mmax
ϵLSIP

))
denote the collection of functions that are asymp-

totically polynomial in N , m, k, and log
(
Mmax
ϵLSIP

)
. Moreover, suppose that

∑N
i=1 |Ci| =

poly
(
N,m, k, log

(
Mmax
ϵLSIP

))
. Then, there exists an algorithm which computes a pair of

ϵLSIP-optimizers of (MT∗
par) and (MTpar) with poly

(
N,m, k, log

(
Mmax
ϵLSIP

))
many calls to

Oracle(·, ·, ·) and poly
(
N,m, k, log

(
Mmax
ϵLSIP

))
additional computational time.

Remark 2.6. Recall that Proposition 2.3(i) has provided a sufficient condition to guarantee the
existence of an optimizer (y⋆1,0,y

⋆T
1 ,w⋆T

1 , . . . , y⋆N,0,y
⋆T
N ,w⋆T

N )T of (MT∗
par). Moreover, recall that

Proposition 2.3(ii) has provided sufficient conditions to guarantee the non-emptiness and bound-
edness of the set of optimizers of (MT∗

par). Under these conditions, the existence of the constant
Mmax > 0 and the finite sets C1 ⊆ X1 × Z, . . . , CN ⊆ XN × Z in Theorem 2.5(ii) follows from the
equivalence between (i) and (iii) in [40, Corollary 9.3.1].

Remark 2.7. Notice that Oracle(·, ·, ·) performs minimization over Xi × Z , and thus when k and
m1, . . . ,mN do not depend on the number N of agent categories, the computational complexity
of Oracle(·, ·, ·) is independent of N and the theoretical computational complexity of (MT∗

par) is
polynomial in N . This will be numerically tested and verified in Section 4.3 in an experiment.

Remark 2.8. In Theorem 2.5, the dependence of the constants Mopt, Mmax on N , m, and k is not
studied. The analysis of this dependence as well as a specific choice of the finite sets C1, . . . , CN in
Theorem 2.5(ii) will be presented later in Proposition 2.23 under more specific assumptions on the
spaces X1, . . . ,XN ,Z , the cost functions c1, . . . , cN , and the test functions G1, . . . ,GN ,H.

2.4. Construction and convergence of approximate matching equilibria. In this subsection, we
show how approximate matching equilibria can be constructed from approximate optimizers of
(MT∗

par) and (MTpar) and we show their convergence to a true matching equilibrum. The construc-
tion requires an operation on P(Xi × Z) called reassembly [54, Definition 2.4], which is a direct
consequence of the gluing lemma of probability measures (see, e.g., [68, Lemma 7.6]). Moreover,
we also need an operation on a collection of probability measures that is called binding. These two
operations are presented in the following definitions.

Definition 2.9 (Reassembly (see [54, Definition 2.4])). Let Assumption 1.1 hold and let ν ∈ P(Z).
For any i ∈ {1, . . . , N} and any θ̂i ∈ P(Xi × Z), let its marginal on Xi and Z be denoted by µ̂i
and ν̂i, respectively. Let X̄i := Xi and let Z̄ := Z in order to differentiate different copies of the
same space. θ̃i ∈ P(Xi × Z) is called a reassembly of θ̂i with marginals µi and ν if there exists
γ ∈ P(Xi ×Z × X̄i × Z̄) which satisfies the following conditions:

(i) the marginal of γ on Xi ×Z is θ̂i;
(ii) the marginal of γ on Xi × X̄i, denoted by ηi, is an optimal coupling of µ̂i and µi under the

cost function dXi , i.e., ηi ∈ Γ(µ̂i, µi) satisfies
∫
Xi×X̄i

dXi(xi, x̄i) ηi(dxi, dx̄i)=W1(µ̂i, µi);
(iii) the marginal of γ on Z × Z̄ , denoted by ζi, is an optimal coupling of ν̂i and ν under the cost

function dZ , i.e., ζi ∈ Γ(ν̂i, ν) satisfies
∫
Z×Z̄ dZ(z, z̄) ζi(dz, dz̄)=W1(ν̂i, ν);

(iv) the marginal of γ on X̄i × Z̄ is θ̃i.
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LetR(θ̂i;µi, ν) ⊂ Γ(µi, ν) denote the set of reassemblies of θ̂i with marginals µi and ν. In particular,
R(θ̂i;µi, ν) is non-empty, as shown by [54, Lemma 2.5].

Definition 2.10 (Binding). Let Assumption 1.1 hold and let ν ∈ P(Z). For i = 1, . . . , N , let γi ∈
P(Xi×Z) be such that the marginal of γi onZ is ν. Then, µ̃ ∈ P(X1×· · ·×XN ) is called a binding
of γ1, . . . , γN if there exists γ ∈ P(X1 × · · · × XN ×Z) which satisfies the following conditions:

(i) for i = 1, . . . , N , the marginal of γ on Xi ×Z is γi;
(ii) the marginal of γ on X1 × · · · × XN is µ̃.

Let B(γ1, . . . , γN ) denote the set of bindings of γ1, . . . , γN .

The following lemma shows that the set of bindings is non-empty.

Lemma 2.11. Let Assumption 1.1 hold and let ν ∈ P(Z). For i = 1, . . . , N , let γi ∈ P(Xi ×Z) be
such that the marginal of γi onZ is ν. Then, there exists a binding µ̃ ∈ B(γ1, . . . , γN ) of γ1, . . . , γN .

Next, let us define the function c̄ : X1 × · · · × XN → R by:

c̄(x1, . . . , xN ) := inf
z∈Z

{
N∑
i=1

ci(xi, z)

}
∀x1 ∈ X1, . . . , ∀xN ∈ XN . (2.5)

Due to the continuity of c1, . . . , cN and the compactness of Z , it follows from [11, Proposition 7.32
& Proposition 7.33] that c̄ is continuous and there exists a Borel measurable function z̃ : X → Z
such that

N∑
i=1

ci
(
xi, z̃(x1, . . . , xN )

)
= c̄(x1, . . . , xN ) ∀x1 ∈ X1, . . . , ∀xN ∈ XN . (2.6)

In the following, in order to control the approximation error of (MT∗
par) and (MTpar), we im-

pose the assumption that the cost functions c1, . . . , cN are Lipschitz continuous. Thus, we extend
Assumption 1.1 as follows.

Assumption 2.12. In addition to (A1)–(A4) in Assumption 1.1, we assume that:

(A4+) For i = 1, . . . , N , there exist constants L(1)
ci > 0 and L(2)

ci > 0 such that ci : Xi × Z → R
satisfies |ci(x, z)− ci(x′, z′)| ≤ L(1)

ci dXi(x, x
′) + L

(2)
ci dZ(z, z

′) for all x, x′ ∈ Xi, z, z′ ∈ Z .

The construction of approximate matching equilibria through parametrizing transfer functions is
detailed in the following theorem.

Theorem 2.13 (Approximation of matching for teams). Let Assumption 2.12 hold. For i = 1, . . . , N ,
let mi ∈ N and let Gi :=

{
gi,1, . . . , gi,mi

}
⊂ C(Xi). Let k ∈ N and let H := {h1, . . . , hk} ⊂ C(Z).

Let gi(·), h(·), and ḡi be given by (2.1), (2.2), and (2.3), respectively. Moreover, let ϵLSIP > 0

be arbitrary, let ϵapprox := ϵLSIP + (N − 1)max1≤i≤N

{
L
(2)
ci

}
WH +

∑N
i=1 L

(1)
ci Wµi,Gi , and let

(ŷi,0, ŷi, ŵi)i=1:N and (θ̂i)i=1:N be feasible solutions of (MT∗
par) and (MTpar) that satisfy2

N∑
i=1

∫
Xi×Z

ci dθ̂i ≤

(
N∑
i=1

ŷi,0 + ⟨ḡi, ŷi⟩

)
+ ϵLSIP. (2.7)

Furthermore, for i = 1, . . . , N , let µ̂i and ν̂i denote the marginals of θ̂i on Xi and Z , respectively,
and let ν̂ ∈ P(Z) satisfy3

N∑
i=1

W1(ν̂, ν̂i) ≤ (N − 1)WH. (2.8)

Let z̃ : X → Z be a Borel measurable function satisfying (2.6). Then, the following statements hold.
(i)
∑N

i=1 ŷi,0 + ⟨ḡi, ŷi⟩ is a lower bound for the optimal value of (MT).

2In particular, (ŷi,0, ŷi, ŵi)i=1:N is an ϵLSIP-optimizer of (MT∗
par) and (θ̂i)i=1:N is an ϵLSIP-optimizer of (MTpar).

3A sufficient condition for (2.8) to hold is when ν̂ = ν̂î for some î ∈ {1, . . . , N}.
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(ii) Let z0 ∈ Z be arbitrary and let

φ̃i,0 := inf
xi∈Xi

{
ci(xi, z0)− ŷi,0 − ⟨gi(xi), ŷi⟩

}
∀1 ≤ i ≤ N − 1,

φ̃i(z) := inf
xi∈Xi

{
ci(xi, z)− ŷi,0 − ⟨gi(xi), ŷi⟩

}
− φ̃i,0 ∀z ∈ Z, ∀1 ≤ i ≤ N − 1,

φ̃N (z) := −
N−1∑
i=1

φ̃i(z) ∀z ∈ Z.

(2.9)

Then, (φ̃i)i=1:N is an ϵapprox-optimizer of (MT∗). Moreover, for i = 1, . . . , N − 1, φ̃i is
L
(2)
ci -Lipschitz continuous.

(iii) ν̂ is an ϵapprox-optimizer of (MT).
(iv) For i = 1, . . . , N , let γ̂i ∈ R(θ̂i;µi, ν̂). Then, γ̂i ∈ Γ(µi, ν̂) and

∫
Xi×Z ci dγ̂i ≤Wci(µi, ν̂)+

ϵapprox.
(v) Let (γ̂i)i=1:N be defined as in statement (iv), let µ̃ ∈ B(γ̂1, . . . , γ̂N ), and let ν̃ := µ̃ ◦ z̃−1.

Then, ν̃ is an ϵapprox-optimizer of (MT).
(vi) Let µ̃, ν̃ be defined as in statement (v) and let γ̃i := µ̃◦(πi, z̃)−1 for i = 1, . . . , N , where πi :

X → Xi denotes the projection function onto Xi. Then, γ̃i ∈ Γ(µi, ν̃) and
∫
Xi×Z ci dγ̃i ≤

Wci(µi, ν̃) + ϵapprox.

By observing the connection between Theorem 2.13(ii)–(vi) and the characterization of matching
equilibria in (ME1’)–(ME3’), we refer to

(
(φ̃i)i=1:N , (γ̂i)i=1:N , ν̂

)
and

(
(φ̃i)i=1:N , (γ̃i)i=1:N , ν̃

)
as

ϵapprox-approximate matching equilibria.
As a consequence of Theorem 2.13, one can construct an approximate optimizer of (MT) which

is supported on at most min1≤i≤N{mi} + k + 2 points via the parametric formulation. This is
summarized in the following corollary.

Corollary 2.14 (Approximate optimizer of (MT) with sparse support). Let the assumptions of The-
orem 2.13 hold. Then, there exist q ∈ N with 1 ≤ q ≤ min1≤i≤N{mi}+ k + 2, α1 > 0, . . . , αq > 0
satisfying

∑q
l=1 αl = 1, z1 ∈ Z, . . . , zq ∈ Z , such that ν̂ :=

∑q
l=1 αlδzl ∈ P(Z) is an ϵapprox-

optimizer of (MT).

Remark 2.15. As shown by Corollary 2.14, ν̂ ∈ P(Z) in Theorem 2.13(iii) can be chosen to be a
discrete probability measure with sparse support. In contrast, ν̃ ∈ P(Z) in Theorem 2.13(v) can be
a non-discrete probability measure even when ν̂ is discrete, due to the presence of the reassembly
and binding steps. A discrete probability measure ν̂ ∈ P(Z) can be interpreted as an approximate
matching equilibrium in which agents only trade finitely many distinct types of goods. On the other
hand, a non-discrete probability measure ν̃ ∈ P(Z) can be interpreted as an approximate matching
equilibrium in which agents trade uncountably many types of goods.

The notion of ϵapprox-approximate matching equilibrium is justified since when given a sequence
of ϵ(l)approx-approximate matching equilibria constructed as above where liml→∞ ϵ

(l)
approx = 0, one can

extract a subsequence that converges to a true matching equilibrium. This is detailed in the next
theorem.

Theorem 2.16 (Construction of matching equilibria). Let Assumption 2.12 hold. Let
(
ϵ
(l)
LSIP ∈

(0,∞)
)
l∈N, let

(
G(l)i

)
i=1:N, l∈N and

(
H(l)

)
l∈N be collections of continuous functions, and let

ϵ
(l)
approx := ϵ

(l)
LSIP + (N − 1) max

1≤i≤N

{
L(2)
ci

}
WH(l) +

N∑
i=1

L(1)
ci Wµi,G

(l)
i

satisfy liml→∞ ϵ
(l)
approx = 0. Moreover, for each l ∈ N, let

(
φ̃
(l)
i

)
i=1:N

, ν̂(l),
(
γ̂
(l)
i

)
i=1:N

, ν̃(l), and(
γ̃
(l)
i

)
i=1:N

be constructed in Theorem 2.13 (with (Gi)i=1:N ←
(
G(l)i

)
i=1:N

,H ← H(l), and ϵLSIP ←
ϵ
(l)
LSIP). Then, the following statements hold.
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(i) For i = 1, . . . , N ,
(
φ̃
(l)
i

)
l∈N has at least one accumulation point in C(Z) with respect to the

metric of uniform convergence.
(ii)

(
ν̂(l)
)
l∈N has at least one accumulation point in

(
P(Z),W1

)
and for i = 1, . . . , N ,

(
γ̂
(l)
i

)
l∈N

has at least one accumulation point in
(
P(Xi ×Z),W1

)
.

(iii)
(
ν̃(l)
)
l∈N has at least one accumulation point in

(
P(Z),W1

)
and for i = 1, . . . , N ,

(
γ̃
(l)
i

)
l∈N

has at least one accumulation point in
(
P(Xi ×Z),W1

)
.

Furthermore, let (lk)k∈N ⊆ N be an increasing subsequence such that
(
ν̂(lk)

)
k∈N converges

in
(
P(Z),W1

)
to ν̂(∞),

(
ν̃(lk)

)
k∈N converges in

(
P(Z),W1

)
to ν̃(∞), and for i = 1, . . . , N ,(

φ̃
(lk)
i

)
k∈N converges uniformly to φ̃

(∞)
i ∈ C(Z),

(
γ̂
(lk)
i

)
k∈N converges in

(
P(Xi × Z),W1

)
to

γ̂
(∞)
i , and

(
γ̃
(lk)
i

)
k∈N converges in

(
P(Xi ×Z),W1

)
to γ̃(∞)

i . Then,

(iv)
(
φ̃
(∞)
i

)
i=1:N

,
(
γ̂
(∞)
i

)
i=1:N

, ν̂(∞) constitute a matching equilibrium,

(v)
(
φ̃
(∞)
i

)
i=1:N

,
(
γ̃
(∞)
i

)
i=1:N

, ν̃(∞) constitute a matching equilibrium.

In order to control the approximation error ϵapprox in Theorem 2.13 to be arbitrarily close to 0, we
need to explicitly construct the test functions G1, . . . ,GN ,H. This is the aim of the next subsection.

2.5. Explicit construction of moment sets on a Euclidean space. In this subsection, we consider
the case where the underlying spacesX1, . . . ,XN ,Z are all compact subsets of Euclidean spaces. We
adopt explicit constructions of continuous test functions G1, . . . ,GN ,H by Neufeld and Xiang [54]
such that (Wµi,Gi)i=1:N and WH can be controlled to be arbitrarily close to 0. These constructions
ensure that the error term ϵapprox in Theorem 2.13 can be controlled to be arbitrarily close to 0. In
the following, we work under Assumption 2.17 and consider test functions G1, . . . ,GN ,H that are
constructed via either Setting 2.18 or Setting 2.19 presented below.

Assumption 2.17. In addition to Assumption 2.12, we make the following assumptions.
(i) For i = 1, . . . , N , Xi ⊂ Rdi for di ∈ N, and dXi is induced by a norm ∥ · ∥ on Rdi .

(ii) Z ⊂ Rd0 for d0 ∈ N, and dZ is induced by a norm ∥ · ∥ on Rd0 .

Setting 2.18. Let Assumption 2.17 hold. In this setting, (Gi)i=1:N andH are constructed as follows.
• For i = 1, . . . , N :

– let −∞ < M i,j < M i,j <∞ for j = 1, . . . , di satisfy Xi ⊆
Śdi

j=1[M i,j ,M i,j ];
– for j = 1, . . . , di, let ni,j ∈ N, κi,j,l :=M i,j +

l
ni,j

(M i,j −M i,j) for l = 0, . . . , ni,j;
– define Gi by

Gi :=
{
Xi ∋ (x1, . . . , xdi)

T 7→ max
1≤j≤di

{
ni,j

M i,j−M i,j
(xj − κi,j,lj )

+
}
∈ R :

0 ≤ lj ≤ ni,j ∀1 ≤ j ≤ di
}
;

– define ϵi := 2
∥∥∥(M i,1−M i,1

ni,1
, . . . ,

M i,di
−M i,di

ni,di

)T∥∥∥.

• Moreover, let −∞ < M0,j < M0,j <∞ for j = 1, . . . , d0 satisfy Z ⊆
Śd0

j=1[M0,j ,M0,j ];
• for j = 1, . . . , d0, let n0,j ∈ N, κ0,j,l :=M0,j +

l
n0,j

(M0,j −M0,j) for l = 0, . . . , n0,j;
• defineH by

H :=

{
Z ∋ (z1, . . . , zd0)

T 7→ max
1≤j≤d0

{
n0,j

M0,j−M0,j
(zj − κ0,j,lj )

+
}
∈ R :

0 ≤ lj ≤ n0,j ∀1 ≤ j ≤ d0
}
;

• define ϵ0 := 2
∥∥∥(M0,1−M0,1

n0,1
, . . . ,

M0,d0
−M0,d0

n0,d0

)T∥∥∥.
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Setting 2.19. Let Assumption 2.17 hold. Let V (C) denote the set of extreme points of a polytope C.
In this setting, (Gi)i=1:N andH are constructed as follows.
• For i = 1, . . . , N :

– let Ci be a finite collection of di-simplices4 in Rdi which satisfies
⋃

C∈Ci
C ⊇ Xi, and if

C1, C2 ∈ Ci and C1 ∩ C2 ̸= ∅ then C1 ∩ C2 is a face4 of both C1 and C2;
– for every extreme point v of some C ∈ Ci, let gi,v : Xi → R be defined 5 as follows:

gi,v(x) :=
∑

u∈V (F )

λFu(x)1{u=v} ∀x ∈ relint(F ) ∩ Xi,

where x =
∑

u∈V (F ) λ
F
u(x)u and F is a face of some C ∈ Ci;

– let vi,0 be an extreme point of some C ∈ Ci, define Gi :=
{
gi,v : v is an extreme point of some

C ∈ Ci and v ̸= vi,0
}

, and define ϵi := 2maxC∈Ci maxv,v′∈V (C)

{
∥v − v′∥

}
.

• Moreover, let C0 be a finite collection of d0-simplices in Rd0 which satisfies
⋃

C∈C0
C ⊇ Z , and

if C1, C2 ∈ C0 and C1 ∩ C2 ̸= ∅ then C1 ∩ C2 is a face of both C1 and C2;
• for every extreme point v of some C ∈ C0, let hv : Z → R be defined 5 as follows:

hv(z) :=
∑

u∈V (F )

λFu(z)1{u=v} ∀z ∈ relint(F ) ∩ Z,

where z =
∑

u∈V (F ) λ
F
u(z)u and F is a face of some C ∈ C0;

• let v0,0 be an extreme point of some C ∈ C0, define H :=
{
hv : v is an extreme point of some

C ∈ C0 and v ̸= v0,0
}

, and define ϵ0 := 2maxC∈C0 maxv,v′∈V (C)

{
∥v − v′∥

}
.

Under these two settings, we are able to control the approximation error in Theorem 2.13 to be
arbitrarily close to 0 as well as construct ϵ-approximate matching equilibria for any ϵ > 0. This is
stated in Theorem 2.20(ii) below. Moreover, statement (iii) of Theorem 2.20 provides a scalability
result which bounds the number of test functions in (Gi)i=1:N and H needed to control the approx-
imation error. Furthermore, statement (iv) of Theorem 2.20 presents a sufficient condition for the
affine independence condition in Proposition 2.3(ii) to hold.

Theorem 2.20 (Controlling the approximation error in Theorem 2.13). Let Assumption 2.17 hold,
let L(2)

c̄ := max1≤i≤N

{
L
(2)
ci

}
, and suppose that (Gi)i=1:N and H are constructed according to

Setting 2.18 or Setting 2.19. Let ϵLSIP > 0 be arbitrary, and define ϵapprox := ϵLSIP+(N−1)L(2)
c̄ ϵ0+∑N

i=1 L
(1)
ci ϵi. Moreover, let (φ̃i)i=1:N , ν̂, (γ̂i)i=1:N , ν̃, (γ̃i)i=1:N be constructed via the procedure in

Theorem 2.13. Then, the following statements hold.
(i) Theorem 2.13 holds with ϵapprox ← ϵapprox, i.e.,

(
(φ̃i)i=1:N , (γ̂i)i=1:N , ν̂

)
and

(
(φ̃i)i=1:N ,

(γ̃i)i=1:N , ν̃
)

constitute ϵapprox-approximate matching equilibria.
(ii) For any ϵ > 0 and any ϵLSIP ∈ (0, ϵ), the test functions (Gi)i=1:N and H can be constructed

via either Setting 2.18 or Setting 2.19 such that ϵapprox ≤ ϵ.
(iii) For i = 1, . . . , N , let Ci,∥·∥ ≥ 1 be a constant that satisfies ∥xi∥ ≤ Ci,∥·∥∥xi∥2 for

all xi ∈ Xi. Similarly, let C0,∥·∥ ≥ 1 be a constant that satisfies ∥z∥ ≤ C0,∥·∥∥z∥2
for all z ∈ Z . Then, in statement (ii), (Gi)i=1:N and H can be constructed via Set-

ting 2.18 such that |Gi| =
∏di

j=1

(
1 +

⌈
4NL

(1)
ci

(M i,j−M i,j)Ci,∥·∥
√
di

ϵ−ϵLSIP

⌉)
for i = 1, . . . , N and

|H| =
∏d0

j=1

(
1 +

⌈
4(N−1)L

(2)
c̄ (M0,j−M0,j)C0,∥·∥

√
d0

ϵ−ϵLSIP

⌉)
.

(iv) Suppose that (Gi)i=1:N and H are constructed via Setting 2.19. Let mi := |Gi| for i =
1, . . . , N and let k := |H|. Then,
• if int(Xi) ∩ int(C) ̸= ∅ for all C ∈ Ci, then there exist mi+1 points xi,1, . . . ,xi,mi+1 ∈
Xi such that themi+1 vectors gi(xi,1), . . . , gi(xi,mi+1) ∈ Rmi are affinely independent;

4The definitions of di-simplices and faces of a convex set can be found in, for example, [60, Section 1 & Section 18].
5Note that gi,v(x) is well-defined for every x ∈ Xi and hv(z) is well-defined for every z ∈ Z due to statements (i)

and (ii) of [54, Proposition 3.10].
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• if int(Z) ∩ int(C) ̸= ∅ for all C ∈ C0, then there exist k + 1 points z1, . . . ,zk+1 ∈ Z
such that the k + 1 vectors h(z1), . . . ,h(zk+1) ∈ Rk are affinely independent.

Remark 2.21. Theorem 2.20(iii) provides insights about the scalability of the approximation scheme
developed in this section. For simplicity, let Xi ⊆ [M,M ]d for d ∈ N, −∞ < M < M < ∞, let
dXi be induced by the Euclidean norm ∥ · ∥2 on Rd for i = 1, . . . , N , let Z ⊆ [M,M ]d, let dZ be
induced by the Euclidean norm ∥ · ∥2 on Rd, and let ci be Lc-Lipschitz continuous (with respect to
the 1-product metric on Xi×Z) for some Lc > 0 for i = 1, . . . , N . Then, by Theorem 2.20, the total
number of test functions in G1, . . . ,GN and H to control the approximation error in Theorem 2.13
to below ϵ is of the order O

(
N
(4NLc(M−M)

√
d

ϵ−ϵLSIP

)d), which is exponential in the dimension d of the

underlying spaces. On the other hand, when (M −M), d, and Lc are fixed, the total number of test
functions grows polynomially in the number N of agent categories.

Under Setting 2.19, we can derive an explicit construction of a linear programming (LP) relaxation
of the LSIP problem (MT∗

par) with bounded superlevel sets under some mild additional assumptions.
This is detailed in the proposition below.

Proposition 2.22 (Explicit construction of LP relaxation of (MT∗
par) with bounded superlevel sets).

Let Assumption 2.17 hold and suppose that (Gi)i=1:N , H are constructed according to Setting 2.19.
For i = 1, . . . , N , let X̂i := {vi,0,vi,1, . . . ,vi,mi} be an enumeration of the finite set

{
v ∈ Rdi :

v is an extreme point of some C ∈ Ci

}
(i.e., the cardinality of this set is mi + 1 ∈ N) and denote

let gi,j := gi,vi,j for j = 0, 1, . . . ,mi. Let Ẑ := {v0,0,v0,1, . . . ,v0,k} be an enumeration of the
finite set

{
v ∈ Rd0 : v is an extreme point of some C ∈ C0

}
(i.e., the cardinality of this set is

k + 1 ∈ N) and denote hl := hv0,l
for l = 0, 1, . . . , k. Moreover, let gi(·), h(·), and ḡi be given

by (2.1), (2.2), and (2.3), respectively. Furthermore, let us assume in addition that for i = 1, . . . , N ,
X̂i ⊆ Xi,

∫
Xi
gi,vi,j dµi > 0 for j = 0, 1, . . . ,mi, and that Ẑ ⊆ Z . Then, the following LP relaxation

of (MT∗
par) has bounded superlevel sets:

maximize
(yi,0,yi,wi)

N∑
i=1

yi,0 + ⟨ḡi,yi⟩

subject to yi,0 + ⟨gi(xi),yi⟩+ ⟨h(zi),wi⟩ ≤ ci(xi, zi)

∀(xi, zi) ∈ X̂i × Ẑ, ∀1 ≤ i ≤ N,
N∑
i=1

wi = 0k,

yi,0 ∈ R, yi ∈ Rmi , wi ∈ Rk ∀1 ≤ i ≤ N.

(2.10)

Setting 2.19 and the choice of the finite sets X̂1, . . . , X̂N , Ẑ in Proposition 2.22 also provide ex-
plicit upper bounds for the constants Mopt and Mmax in the computational complexity results in
Theorem 2.5 that depend on N , m, and k. This allows us to express the computational complexities
in Theorem 2.5 purely in terms of N , m, k, and ϵLSIP.

Proposition 2.23 (Upper bounds for the constants in Theorem 2.5). Let all assumptions of Propo-
sition 2.22 hold. Let us assume that, for i = 1, . . . , N , Xi =

⋃
C∈Ci

C, and that Z =
⋃

C∈C0
C.

Moreover, let us assume6 that maxxi∈Xi,z∈Z
{
ci(xi, z)

}
= 0 for i = 1, . . . , N , and let D1 :=

max1≤i≤N

{
maxxi,x′

i∈Xi

{
∥xi−x′

i∥
}}

,D2 := maxz,z′∈Z
{
∥z − z′∥

}
,L(1)

c := max1≤i≤N

{
L
(1)
ci

}
,

L
(2)
c := max1≤i≤N

{
L
(2)
ci

}
. Furthermore, let Oracle(·, ·, ·) be the global minimization oracle in

Definition 2.4 and let T denote the computational cost of each call to Oracle(·, ·, ·). Then, the
following statements hold.

6This assumption can be satisfied by subtracting a constant from ci, i.e., ci ← ci −maxxi∈Xi, z∈Z
{
ci(xi,z)

}
.
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(i) It holds that hl : Z → R is non-negative for l = 1, . . . , k, maxxi∈Xi

{
∥gi(xi)∥2

}
≤ 1 for

i = 1, . . . , N , and maxz∈Z
{
∥h(z)∥2

}
≤ 1.

(ii) There exists an optimizer (y⋆1,0,y
⋆T
1 ,w⋆T

1 , . . . , y⋆N,0,y
⋆T
N ,w⋆T

N )T of (MT∗
par) that satisfies

∥(y⋆1,0,y⋆T
1 ,w⋆T

1 , . . . , y⋆N,0,y
⋆T
N ,w⋆T

N )T∥2 ≤
(
L
(1)
c D1+L

(2)
c D2

)
(2N+1)(m+N(k+1))

1
2 .

(iii) If the values of D1, D2, L(1)
c , L(2)

c do not depend on N , m, k, ϵLSIP, then there exists an
algorithm which computes an ϵLSIP-optimizer of (MT∗

par) with computational complexity7

O
(
(m+Nk) log((m+Nk)/ϵLSIP)(NT + (m+Nk)ω)

)
.

If we assume in addition that ρmin := min1≤i≤N, 0≤j≤mi

{ ∫
Xi
gi,j dµi

}
> 0, then the following

statements hold.
(iv) For every (y1,0,yT

1 ,w
T
1 , . . . , yN,0,y

T
N ,w

T
N )T ∈ Rm+N(k+1) satisfying yi,0 + ⟨gi(xi),yi⟩+

⟨h(zi),wi⟩ ≤ ci(xi, zi) ∀(xi, zi) ∈ X̂i × Ẑ for i = 1, . . . , N ,
∑N

i=1wi = 0k, and∑N
i=1 yi,0 + ⟨ḡi,yi⟩ ≥ α⋆ where α⋆ denotes the optimal value of (MT∗

par), it holds

that
∥∥(y1,0,yT

1 ,w
T
1 , . . . , yN,0,y

T
N ,w

T
N )T

∥∥
2
≤
(
L
(1)
c D1 + L

(2)
c D2

)
N2(2 + ρ−1

min)(m +

N(k + 1))
1
2 .

(v) If the values of D1, D2, L
(1)
c , L

(2)
c do not depend on N , m, k, ϵLSIP, then

there exists an algorithm which computes a pair of ϵLSIP-optimizers of (MT∗
par) and

(MTpar) with poly
(
N,m, k,− log(ρminϵLSIP)

)
number of calls to Oracle(·, ·, ·) plus

poly
(
N,m, k,− log(ρminϵLSIP)

)
additional computational time.

Remark 2.24. When the conditions X̂i ⊆ Xi, Ẑ ⊆ Z in Proposition 2.22, or the conditions Xi =⋃
C∈Ci

C, Z =
⋃

C∈C0
C in Proposition 2.23 fail to hold, one may extend Xi to X̃i :=

⋃
C∈Ci

C,
extend Z to Z̃ :=

⋃
C∈C0

C, and extend the definition of ci : Xi × Z → R to c̃i : X̃i × Z̃ → R as
follows:

c̃i(xi, z) := min
(x′

i,z
′)∈Xi×Z

{
ci(x

′
i, z

′) + L(1)
ci ∥xi − x′

i∥+ L(2)
ci ∥z − z′∥

}
∀(xi, z) ∈ X̃i × Z̃.

Such an extension satisfies c̃i(xi, z) = ci(xi, z) for all (xi, z) ∈ Xi × Z as well as
∣∣c̃i(xi, z) −

c̃i(x
′
i, z

′)
∣∣ ≤ L(1)

ci ∥xi −x′
i∥+L

(2)
ci ∥z− z′∥ for all (xi, z), (x

′
i, z

′) ∈ X̃i × Z̃ . Thus, the analyses in
this subsection can be carried out with Xi, Z , ci replaced by X̃i, Z̃ , c̃i.

3. NUMERICAL METHOD

In this section, we develop a numerical method for approximately solving the matching for teams
problem. To begin, we solve the LSIP problem (MT∗

par) by developing a so-called cutting-plane dis-
cretization algorithm inspired by Conceptual Algorithm 11.4.1 in [40]. The core idea of the algorithm
is to replace the semi-infinite constraint in (MT∗

par) with a finite subcollection of constraints, which
relaxes (MT∗

par) into a linear programming (LP) problem. Subsequently, one iteratively adds more
constraints to the existing subcollection until the approximation error falls below a pre-specified tol-
erance threshold. The addition of constraints can be thought of as introducing “cuts” to restrict the
feasible set of an LP relaxation of (MT∗

par).
Before presenting the algorithm, let us first introduce the following lemma, which deals with the

construction of an optimal coupling in the discrete-to-discrete case, the discrete-to-continuous case
(also known as the semi-discrete case), and the one-dimensional case. This lemma combines classical
results about discrete optimal transport (see, e.g., [56, Section 2.3] and [9, Section 1.3]), semi-discrete
optimal transport (see, e.g., [49] and [56, Section 5.2]), and one-dimensional optimal transport (see,
e.g., [59, Section 3.1]).

Lemma 3.1 (Construction of optimal coupling). Let (Y, dY) be a compact metric space and let
(Ω,F ,P) be a probability space. For n ∈ N,

(
αi ∈ (0, 1]

)
i=1:n

, distinct points (xi ∈ Y)i=1:n with

7Recall that we denote the computational complexity of the multiplication of two m×m matrices by O(mω).
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i=1 αi = 1, let Y : Ω → Y be a random variable such that P[Y = xi] = αi for i = 1, . . . , n.

Let ν1 ∈ P(Y) denote the law of Y and let ν2 ∈ P(Y). Suppose that any one of the following
assumptions hold:

(C1) The discrete-to-discrete case. ν2 =
∑n2

i=1 βiδyi for n2 ∈ N,
(
βi ∈ (0, 1]

)
i=1:n2

, distinct
points (yi ∈ Y)i=1:n2 with

∑n2
i=1 βi = 1.

(C2) The discrete-to-continuous case. Y ⊂ Rd for d ∈ N, dY is induced by a norm ∥ · ∥ on
Rd under which the closed unit ball

{
x ∈ Rd : ∥x∥ ≤ 1

}
is a strictly convex set8, ν2 is

absolutely continuous with respect to the Lebesgue measure on Y .
(C3) The one-dimensional case. Y ⊂ R and dY is the Euclidean distance on R.
Let the random variable Ȳ : Ω → Y be defined according to the procedures below in the three

cases (C1)–(C3).
• The discrete-to-discrete case. Suppose that (C1) holds and let (γ⋆i,j)i=1:n, j=1:n2 be an optimizer

of the following linear programming (LP) problem:

minimize
(γi,j)

n∑
i=1

n2∑
j=1

dY(xi, yj)γi,j

subject to
n2∑
j=1

γi,j = αi ∀1 ≤ i ≤ n,
n∑

i=1

γi,j = βj ∀1 ≤ j ≤ n2,

γi,j ≥ 0 ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n2.

Let Ȳ : Ω→ Y be such that P[Ȳ = yj |Y = xi] = γ⋆i,j for i = 1, . . . , n, j = 1, . . . , n2.
• The discrete-to-continuous case. Suppose that (C2) holds and let

(
ϕ⋆i
)
i=1:n

⊂ R be an op-
timizer of the following concave maximization problem (which always exists; see, e.g., [54,
Proposition 3.2]): supϕ1,...,ϕn∈R

{∑n
i=1 ϕiαi −

∫
Y max1≤i≤n

{
ϕi − dY(xi, y)

}
ν2(dy)

}
. For

i = 1, . . . , n, let Vi :=
{
z ∈ Y : ϕ⋆i − dY(xi, z) = max1≤k≤n

{
ϕ⋆k − dY(xk, z)

}}
. Let

Ȳ : Ω→ Y be such that P[Ȳ ∈ E|Y = xi] =
ν2
(
E∩Vi

)
ν2(Vi)

for all E ∈ B(Y), for i = 1, . . . , n.
• The one-dimensional case. Suppose that (C3) holds, let F−1

ν2 (t) := inf
{
y ∈ Y : ν2

(
Y ∩

(−∞, y]
)
≥ t

}
for t ∈ [0, 1], and let Ȳ : Ω → Y be constructed via the following proce-

dure.
– Step 1: sort the sequence (x1, . . . , xn) into ascending order x(1) < x(2) < · · · < x(n)

and let σ(xi) denote the order of xi in the sorted sequence, i.e.,
{
σ(xi) : 1 ≤ i ≤ n

}
=

{1, . . . , n} and x(σ(xi)) ≡ xi for i = 1, . . . , n.
– Step 2: for j = 0, 1, . . . , n, let F (j) :=

∑
1≤i≤n, σ(xi)≤j αi.

– Step 3: let U : Ω→ [0, 1] be a uniform random variable on [0, 1] that is independent of Y .
– Step 4: let Ȳ := F−1

ν2

(
UF (σ(Y )) + (1− U)F (σ(Y )− 1)

)
.

Then, in all three cases, the law γ⋆ ∈ P(Y×Y) of the random variable (Y, Ȳ ) : Ω→ Y×Y satisfies
γ⋆ ∈ Γ(ν1, ν2) and

∫
Y×Y dY(x, y) γ

⋆(dx,dy)=W1(ν1, ν2).

We will work with the following assumptions throughout this section.

Assumption 3.2. In addition to Assumption 2.12, we make the following assumptions:
(i) For i = 1, . . . , N , supp(µi) = Xi, and at least one of the assumptions (C1)–(C3) in

Lemma 3.1 is satisfied with respect to Y ← Xi, dY ← dXi , ν2 ← µi.
(ii) For i = 1, . . . , N , Gi :=

{
gi,1, . . . , gi,mi

}
⊂ C(Xi) formi ∈ N. Moreover, for gi : Xi → Rmi

defined in (2.1), there exist mi +1 points xi,1, . . . , xi,mi+1∈ Xi such that the mi +1 vectors
gi(xi,1), . . . , gi(xi,mi+1) ∈ Rmi are affinely independent.

8For example, under the p-norm, this condition is satisfied for all 1 < p <∞ (by the Minkowski inequality), but fails
when p = 1 or p =∞ (assuming d > 1).
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(iii) H := {h1, . . . , hk} ⊂ C(Z) for k ∈ N. Moreover, for h : Z → Rk defined in (2.2), there
exist k + 1 points z1, . . . , zk+1 ∈ Z such that the k + 1 vectors h(z1), . . . ,h(zk+1) ∈ Rk

are affinely independent.

Note that by Proposition 2.3, Assumption 3.2 is sufficient to guarantee that the set of optimizers of
(MT∗

par) is non-empty and bounded, which is crucial for proving the convergence of the cutting-plane
discretization algorithm in this section.

Remark 3.3. Recall that Setting 2.19 is a concrete setting in which Assumption 3.2(ii) and Assump-
tion 3.2(iii) hold. This has been shown in Theorem 2.20(iv).

Algorithm 1 provides a concrete implementation of the cutting-plane discretization method for
solving (MT∗

par). A key step in Algorithm 1 is to solve LP relaxations of (MT∗
par) in which the semi-

infinite constraint yi,0 + ⟨gi(xi),yi⟩ + ⟨h(zi),wi⟩ ≤ ci(xi, zi) ∀(xi, zi) ∈ Xi × Z is replaced by a
finite subcollection of constraints for i = 1, . . . , N . Specifically, for any r ∈ Z+ and any finite set
C(r)i ⊆ Xi ×Z , let (MT

∗(r)
par ) denote the following LP problem:

maximize
(yi,0,yi,wi)

N∑
i=1

yi,0 + ⟨ḡi,yi⟩

subject to yi,0 + ⟨gi(xi),yi⟩+ ⟨h(zi),wi⟩ ≤ ci(xi, zi)

∀(xi, zi) ∈ C(r)i , ∀1 ≤ i ≤ N,
N∑
i=1

wi = 0k,

yi,0 ∈ R, yi ∈ Rmi , wi ∈ Rk ∀1 ≤ i ≤ N.

(MT
∗(r)
par )

The LP problem (MT
∗(r)
par ) admits the following dual LP problem:

minimize
(θi,x,z), ξ

N∑
i=1

∑
(x,z)∈C(r)

i

θi,x,zci(x, z)

subject to
∑

(x,z)∈C(r)
i

θi,x,z = 1 ∀1 ≤ i ≤ N,

∑
(x,z)∈C(r)

i

θi,x,zgi(x) = ḡi ∀1 ≤ i ≤ N,

∑
(x,z)∈C(r)

i

θi,x,zh(z) = ξ ∀1 ≤ i ≤ N,

θi,x,z ∈ R+ ∀(x, z) ∈ C(r)i , ∀1 ≤ i ≤ N,

ξ ∈ Rk.

(MT
(r)
par)

Remark 3.4 explains the assumptions of Algorithm 1. The properties of Algorithm 1 are presented in
Proposition 3.5.

Remark 3.4 (Details of Algorithm 1). Let Assumption 3.2 hold. Algorithm 1 is inspired by the Con-
ceptual Algorithm 11.4.1 in [40]. Below is a list explaining the inputs to Algorithm 1.
• (Xi)i=1:N and (ci)i=1:N are given by Assumption 1.1.
• (gi : Xi → Rmi)i=1:N , h : Z → Rk, and (ḡi ∈ Rmi)i=1:N are defined in (2.1), (2.2), and (2.3),

respectively.
• C(0)i ⊆ Xi×Z is a finite set for i = 1, . . . , N . The sets

(
C(0)i

)
i=1:N

are chosen such that the LP

problem (MT
∗(r)
par ) with r = 0 has bounded superlevel sets. The existence of such

(
C(0)i

)
i=1:N

is
shown in Proposition 3.5(i).
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Algorithm 1: Cutting-plane discretization algorithm for solving (MT∗
par) and (MTpar)

Input: (Xi)i=1:N , (ci)i=1:N , (gi : Xi → Rmi)i=1:N , (ḡi ∈ Rmi)i=1:N , h : Z → Rk,(
C(0)i ⊆ Xi ×Z

)
i=1:N

, Oracle(·, ·, ·), ϵLSIP > 0

Output: αUB
MTpar

, αLB
MTpar

, (ŷi,0, ŷi, ŵi)i=1:N , (θ̂i)i=1:N

1 r ← 0.
2 while true do
3 Solve the LP problem (MT

∗(r)
par ), denote the computed optimal value by α(r), denote the

computed optimizer by
(
y
(r)
i,0 ,y

(r)
i ,w

(r)
i

)
i=1:N

, and denote the corresponding optimizer

of the dual LP problem (MT
(r)
par) by

(
θ
(r)
i,x,z

)
(x,z)∈C(r)

i ,i=1:N
, ξ(r).

4 for i = 1, . . . , N do
5 Call Oracle

(
i,y

(r)
i ,w

(r)
i

)
and let

(
x
⋆(r)
i , z

⋆(r)
i , β

(r)
i

)
be its output.

6 Let C⋆(r)i ⊆ Xi ×Z be a finite set such that
(
x
⋆(r)
i , z

⋆(r)
i

)
∈ C⋆(r)i .

7 C(r+1)
i ← C(r)i ∪ C

⋆(r)
i .

8 if
∑N

i=1 y
(r)
i,0 − β

(r)
i ≤ ϵLSIP then

9 Skip to Line 11.

10 r ← r + 1.

11 αUB
MTpar

← α(r), αLB
MTpar

← α(r) −
(∑N

i=1 y
(r)
i,0 − β

(r)
i

)
.

12 for i = 1, . . . , N do
13 ŷi,0 ← β

(r)
i , ŷi ← y

(r)
i , ŵi ← w

(r)
i .

14 θ̂i ←
∑

(x,z)∈C(r)
i

θ
(r)
i,x,zδ(x,z).

15 return αUB
MTpar

, αLB
MTpar

, (ŷi,0, ŷi, ŵi)i=1:N , (θ̂i)i=1:N .

• Oracle(·, ·, ·) is the global minimization oracle in Definition 2.4. We assume that a numerical
procedure can be implemented to solve this global minimization problem.
• ϵLSIP > 0 is a pre-specified numerical tolerance value (see Proposition 3.5).

We would like to remark that when solving the LP problem (MT
∗(r)
par ) in Line 3 by the dual simplex

algorithm (see, e.g., [67, Chapter 6.4]) or the interior point algorithm (see, e.g., [67, Chapter 18]),
one can obtain a corresponding optimizer of the dual LP problem (MT

(r)
par) from the outputs of these

algorithms.

Proposition 3.5 (Properties of Algorithm 1). Let Assumption 3.2 hold. Then,

(i) there exist finite sets
(
C(0)i ⊆ Xi × Z

)
i=1:N

such that the LP problem (MT
∗(r)
par ) with r = 0

has bounded superlevel sets.
Moreover, assume that all inputs of Algorithm 1 are set according to Remark 3.4. Then, the following
statements hold.

(ii) Algorithm 1 terminates after finitely many iterations.
(iii) αLB

MTpar
≤ (MT∗

par) ≤ αUB
MTpar

where αUB
MTpar

− αLB
MTpar

≤ ϵLSIP.

(iv) (ŷi,0, ŷi, ŵi)i=1:N is an ϵLSIP-optimal solution of (MT∗
par) and

∑N
i=1 ŷi,0+⟨ḡi, ŷi⟩ = αLB

MTpar
.

(v) (θ̂i)i=1:N is an ϵLSIP-optimal solution of (MTpar) where θ̂i has finite support for i = 1, . . . , N

and
∑N

i=1

∫
Xi×Z ci dθ̂i = αUB

MTpar
.

The concrete procedure for computing approximate matching equilibria based on the outputs of
Algorithm 1 is shown in Algorithm 2. Remark 3.6 explains the assumptions and details of Algo-
rithm 2. The properties of Algorithm 2 are presented in Theorem 3.7.
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Algorithm 2: Construction of approximate matching equilibria
Input: (Xi)i=1:N , Z , (µi)i=1:N , (ci)i=1:N , ϵLSIP > 0, (Gi)i=1:N ,H, z̃(·), Oracle(·, ·, ·)
Output: (φ̃i)i=1:N , ν̂, (γ̂i)i=1:N , ν̃, (γ̃i)i=1:N , αLB

MT, α̂UB
MT, α̃UB

MT, ϵ̂sub, ϵ̃sub
1 Let (gi(·))i=1:N , h(·), and (ḡi)i=1:N be defined by (2.1), (2.2), and (2.3).

2 Construct finite sets
(
C(0)i ⊆ Xi ×Z

)
i=1:N

such that the LP problem (MT
∗(r)
par ) with r = 0

has bounded superlevel sets.
3
(
αUB
MTpar

, αLB
MTpar

, (ŷi,0, ŷi, ŵi)i=1:N , (θ̂i)i=1:N

)
← the outputs of Algorithm 1 with inputs(

(Xi)i=1:N , (ci)i=1:N , (gi(·))i=1:N , (ḡi)i=1:N , h(·),
(
C(0)i

)
i=1:N

, Oracle(·, ·, ·), ϵLSIP
)
.

4 Choose an arbitrary z0 ∈ Z and let (φ̃i)i=1:N be defined as in (2.9).
5 Let ν̂i denote the marginal of θ̂i on Z for i = 1, . . . , N . Choose an arbitrary î ∈ {1, . . . , N}.
6 K ← |supp(ν̂î)|. Express ν̂î =

∑K
l=1 αlδzl for (αl ∈ (0, 1])l=1:K satisfying

∑K
l=1 αl = 1 and

(zl ∈ Z)l=1:K . Let (Ω,F ,P) be a probability space and let Z : Ω→ Z be a random
variable such that P[Z = zl] = αl for l = 1, . . . ,K. ν̂ ← the law of Z.

7 for i = 1, . . . , N do
8 Let a random variable Zi : Ω→ Z be constructed via Lemma 3.1 with Y ← Z ,

dY ← dZ , Y ← Z, ν2 ← ν̂i, Ȳ ← Zi.

9 Let a random variable Xi : Ω→ Xi be such that P[Xi ∈ E|Zi = z] = θ̂i(E×{z})
ν̂i({z}) for

every z ∈ supp(ν̂i) and every E ∈ B(Xi).
10 Let a random variable X̄i : Ω→ Xi be constructed via Lemma 3.1 with Y ← Xi,

dY ← dXi , Y ← Xi, ν2 ← µi, Ȳ ← X̄i.
11 Define a random variable Z̄ : Ω→ Z as Z̄ := z̃(X̄1, . . . , X̄N ). ν̃ ← the law of Z̄.
12 for i = 1, . . . , N do
13 γ̂i ← the law of (X̄i, Z), α̂i ← E[ci(X̄i, Z)]. γ̃i ← the law of (X̄i, Z̄),

α̃i ← E[ci(X̄i, Z̄)].

14 αLB
MT ← αLB

MTpar
, α̂UB

MT ←
∑N

i=1 α̂i, α̃UB
MT ←

∑N
i=1 α̃i.

15 ϵ̂sub ← α̂UB
MT − αLB

MT, ϵ̃sub ← α̃UB
MT − αLB

MT.
16 return (φ̃i)i=1:N , ν̂, (γ̂i)i=1:N , ν̃, (γ̃i)i=1:N , αLB

MT, α̂UB
MT, α̃UB

MT, ϵ̂sub, ϵ̃sub.

Remark 3.6 (Details of Algorithm 2). Let Assumption 3.2 hold. Below is a list explaining the inputs
to Algorithm 2.
• (Xi)i=1:N , Z , (µi)i=1:N , and (ci)i=1:N are given by Assumption 1.1.
• ϵLSIP > 0 is a pre-specified error tolerance value when calling Algorithm 1 in Line 3 (see

Proposition 3.5 and Theorem 3.7).
• (Gi)i=1:N contain test functions for µ1, . . . , µN that satisfy Assumption 3.2(ii). H contains test

functions on Z that satisfy Assumption 3.2(iii). The choice of (Gi)i=1:N and H controls the
sub-optimality of the outputs of Algorithm 2 (see Theorem 3.7).
• z̃ : X → Z is a Borel measurable function which satisfies (2.6).
• Oracle(·, ·, ·) is the global minimization oracle in Definition 2.4.

The list below provides further explanations of some lines in Algorithm 2.
• Line 2 constructs finite sets

(
C(0)i ⊆ Xi×Z

)
i=1:N

which are then used as input to Algorithm 1.
This is possible due to Proposition 3.5(i), Assumption 3.2(ii), and Assumption 3.2(iii).
• Line 6 requires the support of ν̂î to be finite, which is guaranteed by Proposition 3.5(v).
• Line 8 constructs an optimal coupling between ν̂î and ν̂i via Lemma 3.1. This is possible since

the assumption (C1) is satisfied due to the finite support of ν̂i. Moreover, the random variable
Xi : Ω→ Xi in Line 9 is well-defined due to the finite support of ν̂i.
• Line 10 constructs an optimal coupling between the law ofXi (which is equal to the marginal of
θ̂i onXi) and µi via Lemma 3.1. This is possible due to Proposition 3.5(v) and Assumption 3.2(i).



20 A. NEUFELD AND Q. XIANG

Theorem 3.7 (Properties of Algorithm 2). Let Assumption 3.2 hold. Assume in addition that all
inputs of Algorithm 2 are set according to Remark 3.6. Moreover, let

(
W µi,Gi

)
i=1:N

satisfy W µi,Gi ≥
Wµi,Gi for i = 1, . . . , N , let WH satisfy WH ≥WH, and let ϵtheo be defined as

ϵtheo := ϵLSIP +

(
N∑
i=1

L(1)
ci W µi,Gi

)
+

(∑
i ̸=î

L(2)
ci

)
WH,

where î ∈ {1, . . . , N} is chosen in Line 5. Then, the following statements hold.

(i) (φ̃i)i=1:N is an ϵ̃sub-optimizer of (MT∗) and for i = 1, . . . , N − 1, φ̃i is L(2)
ci -Lipschitz

continuous.
(ii) ν̂ is an ϵ̂sub-optimizer of (MT).

(iii) For i = 1, . . . , N , γ̂i ∈ Γ(µi, ν̂) and
∫
Xi×Z ci dγ̂i ≤Wci(µi, ν̂) + ϵ̂sub.

(iv) ν̃ is an ϵ̃sub-optimizer of (MT).
(v) For i = 1, . . . , N , γ̃i ∈ Γ(µi, ν̃) and

∫
Xi×Z ci dγ̃i ≤Wci(µi, ν̃) + ϵ̃sub.

(vi) αLB
MT < (MT) < α̃UB

MT < α̂UB
MT and ϵ̃sub ≤ ϵ̂sub ≤ ϵtheo.

In particular,
(
(φ̃i)i=1:N , (γ̂i)i=1:N , ν̂

)
constitute an ϵ̂sub-approximate matching equilibrium and(

(φ̃i)i=1:N , (γ̃i)i=1:N , ν̃
)

constitute an ϵ̃sub-approximate matching equilibrium.
Next, assume in addition to the above assumptions that Assumption 2.17 also holds. Moreover,

suppose that for arbitrary ϵ0 > 0, ϵ1 > 0, . . . , ϵN > 0, one can construct (Ci)i=1:N , (Gi)i=1:N , C0,
H via Setting 2.19 such that ϵ0 ≤ ϵ0, int(Z) ∩ int(C) for all C ∈ C0, and for i = 1, . . . , N , ϵi ≤ ϵi,
int(Xi) ∩ int(C) ̸= ∅ for all C ∈ Ci. Then,

(vii) for any ϵ > 0 and ϵLSIP ∈ (0, ϵ), one can construct (Gi)i=1:N ,H such that ϵ̃sub ≤ ϵ̂sub ≤ ϵ.

Remark 3.8. A concrete case in which the assumptions of Theorem 3.7(vii) are satisfied is when each
of X1, . . . ,XN ,Z can be expressed as a union of simplices that are interior-disjoint. This follows
from [54, Proposition 3.9].

Remark 3.9 (Sub-optimality estimates in Algorithm 2 and a priori upper bound). From a theoreti-
cal perspective, Theorem 3.7(vii) states that, for any given ϵ > 0, there exist explicit choices of the
inputs ϵLSIP, (Gi)i=1:N , and H of Algorithm 2 such that

(
(φ̃i)i=1:N , (γ̂i)i=1:N , ν̂

)
and

(
(φ̃i)i=1:N ,

(γ̃i)i=1:N , ν̃
)

computed by Algorithm 2 are ϵ-approximate matching equilibria. One such choice is
to let ϵLSIP ∈ (0, ϵ) be arbitrary and then let G1, . . . ,GN ,H be defined as in Setting 2.19 such that
ϵi ≤ ϵ−ϵLSIP

2NL
(1)
ci

for i = 1, . . . , N and ϵ0 ≤ ϵ−ϵLSIP

2(N−1)L
(2)
c̄

(where L(2)
c̄ := max1≤i≤N

{
L
(2)
ci

}
). However,

in practice, one often specifies ϵLSIP > 0, (Gi)i=1:N , and H in the inputs of Algorithm 2 and subse-
quently uses the values of ϵ̂sub and ϵ̃sub in the output to estimate the sub-optimality of the computed
solutions. The term ϵtheo in Theorem 3.7(vi) provides a theoretical upper bound for the computed
sub-optimality estimates ϵ̂sub and ϵ̃sub. ϵtheo is referred to as an a priori upper bound for ϵ̂sub and
ϵ̃sub since it is based on the upper estimates

(
W µi,Gi

)
i=1:N

of
(
Wµi,Gi

)
i=1:N

and the upper estimate
WH of WH that can be computed independent of Algorithm 2. The computed sub-optimality esti-
mates ϵ̂sub and ϵ̃sub are typically much less conservative than their a priori upper bound ϵtheo, as we
will demonstrate in the numerical experiments in Section 4.

4. NUMERICAL EXPERIMENTS

In this section, we perform three numerical experiments to demonstrate the numerical algorithm
(i.e., Algorithm 2) that we have developed. The first experiment in Section 4.1 studies the business
location distribution problem introduced in Application 1.3 where X1, . . . ,XN ,Z ⊂ R2 to demon-
strate the convergence of the approximate matching equilibria constructed by Algorithm 2 to true
matching equilibria. The second experiment in Section 4.2 examines the performance of our algo-
rithm for the 2-Wasserstein barycenter problem in Application 1.4 where X1, . . . ,XN ,Z ⊂ R2. The
third experiment in Section 4.3 investigates the empirical scalability of our algorithm in a problem
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FIGURE 4.1. Experiment 1 – The leftmost panel shows the railway line and the
locations of the train stations in the city. The rest of the panels show the probability
density functions of µ1, . . . , µN .

where X1, . . . ,XN ⊂ R and Z ⊂ R2. The code used in the numerical experiments is available on
GitHub9.

4.1. Experiment 1: business location distribution. In our first numerical experiment, we study the
business location distribution problem in Application 1.3. Let us consider a square-shaped city and
a type of business which hires 4 categories of employees, that is, this matching for teams problem
involves 5 categories of agents and N = 5. The costs for the employees to travel on foot in the city
are given by the city block distance, i.e., the travel cost between two locations x = (x1, x2)

T and
x′ = (x′1, x

′
2)

T is ∥x−x′∥1 = |x1−x′1|+|x2−x′2|. Moreover, there is a railway line that runs through
the city with 5 train stations at locations u1, . . . ,u5 ∈ R2 (see the leftmost panel of Figure 4.1) where
the travel cost between consecutive train stations is 0.1. Therefore, for i = 1, . . . , 4, we define the
commuting cost of the i-th category of employees from xi to z by

ci(xi, z) := 0.15

(
min

1≤j≤5, 1≤k≤5

{
∥xi − uj∥1 + ∥z − uk∥1 + 0.1|j − k|

}
∧ ∥xi − z∥1

)
,

where 0.15 is the weight factor associated to the commuting costs. On the other hand, we define the
restocking cost of business outlets to be a scaled city block distance c5(x5, z) := 0.4∥x5 − z∥1.

The specific settings of this experiment are detailed below.

Assumption 4.1. We assume that the following statements hold.
• N = 5. For i = 1, . . . , 4, Xi = [−2, 2]2 \ (−1, 1)2 ⊂ R2, and X5 = [−2, 2]× [−3,−2] ⊂ R2.

Moreover, dXi(xi,x
′
i) := ∥xi − x′

i∥2 for i = 1, . . . , 5.
• Z = [−2, 2]2 ⊂ R2 and dZ(z, z′) := ∥z − z′∥2.
• For i = 1, . . . , 5, µi ∈ P(Xi) is absolutely continuous with respect to the Lebesgue measure on
Xi and supp(µi) = Xi. The density of µi is a continuous piece-wise affine and positive function
on Xi.
• For i = 1, . . . , 4, ci : Xi × Z → R is given by ci(xi, z) := 0.15

(
min1≤j≤5, 1≤k≤5

{
∥xi −

uj∥1 + ∥z − uk∥1 + 0.1|j − k|
}
∧ ∥xi − z∥1

)
. c5 : X5 × Z → R is given by c5(x5, z) :=

0.4∥x5 − z∥1.
• The test functions G1, . . . ,GN ,H are constructed via Setting 2.19 such that Assumption 3.2(ii)

and Assumption 3.2(iii) are satisfied.

Figure 4.1 shows the shape of the sets X1, . . . ,XN , as well as the probability density functions of
µ1, . . . , µN as color plots (see the color bar on the right for the scale). In order to compute approx-
imate matching equilibria for this business location distribution problem, we fix ϵLSIP = 2 × 10−4

and test 5 different combinations of test functions G1, . . . ,GN ,H. Specifically, the test functions in
G1, . . . ,GN are defined based on increasingly finer partitions of X1, . . . ,XN into triangles, and the
value of |G1| + · · · + |GN | ranges between 109 and 14284. Moreover, the test functions in H are

9https://github.com/qikunxiang/MatchingForTeams

https://github.com/qikunxiang/MatchingForTeams
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FIGURE 4.2. Experiment 1 – Left: the lower bound αLB
MT and the upper bounds α̂UB

MT,
α̃UB
MT for the optimal value of (MT) computed by Algorithm 2. Right: the computed

sub-optimality estimates ϵ̂sub, ϵ̃sub and their a priori upper bound ϵtheo on the log-
scale. The tuples on the bottom indicate the number of test functions (|G1| + · · · +
|GN |, |H|).

defined based on increasingly finer partitions of Z into triangles, and the value of |H| ranges be-
tween 24 and 4224. The values of α̂UB

MT, α̃UB
MT in Line 14 of Algorithm 2 are computed via Monte

Carlo integration using 104 independent random samples. Moreover, each Monte Carlo integration is
repeated 100 times in order to examine the Monte Carlo error.

Figure 4.2 shows the computed upper and lower bounds for (MT), the sub-optimality estimates
ϵ̂sub, ϵ̃sub, and their a priori theoretical upper bound ϵtheo derived from Theorem 3.7(vi). The left
panel of Figure 4.2 shows the upper bounds α̂UB

MT, α̃UB
MT and the lower bound αLB

MT computed by
Algorithm 2. The horizontal axis shows the number of test functions used, i.e., each tuple corresponds
to
(
|G1|+ · · ·+ |GN |, |H|

)
. It can be seen that α̃UB

MT is considerably better than α̂UB
MT. The differences

between the upper bounds α̂UB
MT and α̃UB

MT and the lower bound αLB
MT are large when |G1|+· · ·+|GN | =

109 and |H| = 24. When |G1| + · · · + |GN | and |H| increase, the difference between the bounds
decreases. The right panel of Figure 4.2 compares the computed sub-optimality estimates ϵ̂sub and
ϵ̃sub with their a priori theoretical upper bound ϵtheo on the log-scale. The error bars indicate the
Monte Carlo errors in the computation of the upper bounds α̂UB

MT and α̃UB
MT. The results show that the

value of ϵtheo is around 10 to 60 times larger than ϵ̂sub and ϵ̃sub. This demonstrates that not only does
Algorithm 2 produce feasible solutions of (MT), (MT∗), and (MTcp), it also produces sub-optimality
estimates ϵ̂sub, ϵ̃sub of these feasible solutions that are much less conservative than suggested by an a
priori theoretical analysis, as discussed in Remark 3.9. Specifically, when |G1|+ · · ·+ |GN | = 14284
and |H| = 4224, the value of ϵtheo is equal to 0.4002, which indicates that the solutions computed by
Algorithm 2 could be poor. Despite that, the values of the computed sub-optimality estimates ϵ̂sub and
ϵ̃sub are 0.0120 and 0.0061, respectively. By Theorem 2.16, this shows that

(
(φ̃i)i=1:N , (γ̂i)i=1:N ,

ν̂
)

and
(
(φ̃i)i=1:N , (γ̃i)i=1:N , ν̃

)
computed by Algorithm 2 are approximate matching equilibria that

are close to true matching equilibria.
Finally, Figure 4.3, Figure 4.4, and Figure 4.5 illustrate ν̂, ν̃, (γ̃i)i=1:N , and (φ̃i)i=1:N from the

outputs of Algorithm 2. The top row of Figure 4.3 shows ν̂ as bubble plots, where the locations of the
red circles represent the atoms in ν̂, and the size and opacity of each circle represents the probability
of each atom. The bottom row of Figure 4.3 shows ν̃ as grayscale color plots superimposed with
bubble plots. The reason for this choice is that for every combination of test functions, ν̃ is a mixed
probability measure containing a discrete component with two atoms and a non-discrete component.
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FIGURE 4.3. Experiment 1 – The probability measures ν̂ and ν̃ computed by Al-
gorithm 2. The top row shows ν̂ as bubble plots. The bottom row shows ν̃ as color
plots (in grayscale) superimposed with bubble plots. The tuple on the bottom of each
column indicates the number of test functions (|G1|+ · · ·+ |GN |, |H|).

FIGURE 4.4. Experiment 1 – 1000 Coupled samples from the probability measures
(γ̃i)i=1:N computed by Algorithm 2. The black dots and red dots represent the loca-
tions of employees/suppliers and business outlets, respectively. The blue lines con-
necting the black and red dots indicate the coupling of the samples.

FIGURE 4.5. Experiment 1 – Color plots showing the approximately optimal trans-
fer functions (φ̃i)i=1:N computed by Algorithm 2.

The probabilities of the two atoms in ν̃ are shown as text in the bubble plot, while the histograms of
the non-discrete part of ν̃ are shown as grayscale color plots. Moreover, it can be observed from the
bottom row of Figure 4.3 that there is some probability in ν̃ concentrated on a horizontal line. Fig-
ure 4.4 shows 1000 coupled samples from the approximately optimal couplings (γ̃i)i=1:N computed
by Algorithm 2 when |G1|+ · · ·+ |GN | = 14284 and |H| = 4224, where the black dots and red dots
represent the locations of xi and z in the samples, and the blue lines connecting the dots indicate the
coupling between the locations in the samples. Samples from (γ̂i)i=1:N look very similar to those
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from (γ̃i)i=1:N and are thus not shown here. These coupled samples illustrate how the employees in
each category choose the business outlets to work at, as well as how the business outlets choose the
suppliers to restock from. Figure 4.5 shows the transfer functions (φ̃i)i=1:N computed by Algorithm 2
in color plots (see the color bar on the right for the scale). Recall that φ̃5 = −(φ̃1 + φ̃2 + φ̃3 + φ̃4)
by our construction in (2.9). The following insights can be drawn from Figure 4.3, Figure 4.4, and
Figure 4.5.
• As the number of test functions increases, the structures of both the discrete probability measure
ν̂ and the non-discrete probability measure ν̃ increase in sophistication.
• As discussed in Remark 2.15, ν̂ can be interpreted as an approximate matching equilibrium

where the business outlets are only located at finitely many locations. In particular, it can be
observed that ν̂ is sparser than indicated by the theoretical result in Corollary 2.14. When |G1|+
· · · + |GN | = 14284 and |H| = 4224, the two atoms in ν̂ with the largest probabilities are
(0,−1.5)T and (−1.5,−1.5)T, which correspond to the two train stations in the south.
• ν̃ represents an approximate matching equilibrium where business outlets are distributed over

uncountably many locations. It shows some highly non-trivial features including the presence
of two atoms at (0,−1.5)T and (−1.5,−1.5)T, non-zero probability on a one-dimensional sub-
space, and an absolutely continuous component. Moreover, it can be observed from Figure 4.2
that ν̃ is considerably more optimal than ν̂. This demonstrates that, when the business is close to
an equilibrium state, around 22.1% of its outlets will be located at the train station at (0,−1.5)T,
around 1.4% of its outlets will be location at the train station at (−1.5,−1.5)T, and the rest of its
outlets will not be concentrated at specific locations but will instead be dispersed into a contin-
uum of locations, where a considerable portion of outlets will be dispersed along a line segment
passing through the two train stations.
• The approximately optimal couplings γ̃1, γ̃2, γ̃3, γ̃4 demonstrate how the presence of the train in

the city impacts the workplace choices of the employees. Since the train connects the northern
part of the city with the southern part, many residents of in the northern part of the city will
commute to the southern part by train. On the other hand, some residents in the western and
eastern parts of the city that live far from train stations will work at business outlets that are
nearby.
• The approximately optimal transfer functions φ̃1, φ̃2, φ̃3, φ̃4 can be interpreted as “salary maps”

up to the addition of constants, which indicate the amount of salary paid out to each category
of employees at each business outlet location. Using the “salary map” φ̃i, the i-th category of
employees can determine an approximately optimal workplace location based on where they
reside, through solving the minimization problem minz∈Z

{
ci(xi, z) − φ̃i(z)

}
. On the other

hand, φ̃5 = −(φ̃1+ φ̃2+ φ̃3+ φ̃4) corresponds to the negative of the total salary paid out to the
employees at each business outlet location. Due to all the suppliers being located in the southern
part of the city, business outlets that are located in the northern part of the city need to spend
more on restocking and thus will pay lower salaries. Besides this observation, it can be seen
from Figure 4.5 that the approximately optimal transfer functions are continuous piece-wise
affine and exhibit complex patterns due to the presence of the train stations.

Using the computed approximate matching equilibria, business owners can get insights for deter-
mining how to optimally set up the business outlets. Moreover, they can aid city planners in analyzing
the effects of transportation infrastructures, e.g., highways, railways, on shaping the geographic struc-
ture of business outlets at equilibrium. For example, in the particular problem instance that we have
analyzed in this subsection, the experimental results above offer the following recommendations.
• The railway operators can use the computed approximately optimal couplings (γ̃i)i=1:N to

gauge the demand for the train services at each train station. Therefore, the railway operations
can be planned accordingly to cater to the commuters and avoid congestion.
• A second railway line could be added to the city to connect residents in the western and eastern

parts of the city to the southern part due to the proximity of the southern part to the suppliers.



FEASIBLE APPROXIMATION FOR LARGE-SCALE MATCHING FOR TEAMS PROBLEMS 25

The effects of a second railway line may be analyzed by incorporating it into the cost func-
tions (ci)i=1:N and subsequently analyzing the resulting new equilibrium. This can potentially
increase the overall economic efficiency of the city.
• Since a computed approximate matching equilibrium only reflects an approximately optimal

structure of the city at equilibrium, the actual structure of the city may differ from a com-
puted equilibrium. Therefore, the relevant decision makers can utilize the computed approx-
imate matching equilibrium to implement additional policies to incentivize and facilitate the
shift towards the optimal structure in order to improve the overall economic efficiency of the
city.

4.2. Experiment 2: 2-Wasserstein barycenter. In the second numerical experiment, we study the
well-known 2-Wasserstein barycenter problem for two-dimensional probability measures µ1, . . . , µN ,
which has been introduced in Application 1.4. Specifically, we study two instances of the problem.
The first instance considers the case where µ1, . . . , µN are from the same location-scatter family as
defined by Álvarez-Esteban et al. [6, Definition 2.1]. In this case, an approximate optimizer of (MT)
can be computed to high precision with a fixed-point scheme. We treat the approximate optimizer
and its corresponding objective value computed this way as the ground truths, and we compare the
values of α̂UB

MT, α̃UB
MT, αLB

MT, and ν̃ computed by Algorithm 2 with them to show the correctness of
our numerical approach. In the second instance, we consider the general case where µ1, . . . , µN are
not from the same location-scatter family, and we showcase the performance of Algorithm 2 for
approximately computing a 2-Wasserstein barycenter of µ1, . . . , µN .

4.2.1. Location-scatter family. In the first problem instance, we take µ1, . . . , µN from the same
location-scatter family as defined by Álvarez-Esteban et al. [6] below.

Definition 4.2 (Location-scatter family of probability measures [6, Definition 2.1]). Let µ0 ∈ P(Rd)
be a probability measure with zero mean and identity covariance matrix. The location-scatter family
generated by µ0 is defined as the following family of probability measures:

F(µ0) :=
{
µ0 ◦ L−1 : L : Rd ∋ x 7→ Ax+ b ∈ Rd, A ∈ Sd++, b ∈ Rd

}
,

where Sd++ denotes the set of d× d symmetric positive definite matrices.

Below is a list presenting the settings of this problem instance.

Assumption 4.3. We assume that the following statements hold.
• µ0 ∈ P(R2) is supported on a square and is absolutely continuous with respect to the Lebesgue

measure on R2. It is the mixture of 3 bivariate Gaussian measures truncated to the square (see
the leftmost panel of Figure 4.6 for its probability density function).
• N = 5. For i = 1, . . . , 5, µi ∈ F(µ0). µi is restricted to its support supp(µi) =: Xi and treated

as an element of P(Xi). Moreover, dXi(xi,x
′
i) := ∥xi − x′

i∥2.
• Z = conv(X1 ∪ · · · ∪ X5) and dZ(z, z′) := ∥z − z′∥2.
• For i = 1, . . . , 5, ci : Xi × Z → R is given by ci(xi, z) := 1

5

(
∥z∥22 − 2⟨xi, z⟩

)
= 1

5∥xi −
z∥22 − 1

5∥xi∥22.
• The test functions G1, . . . ,GN ,H are constructed via Setting 2.19 such that Assumption 3.2(ii)

and Assumption 3.2(iii) are satisfied.

Figure 4.6 shows the probability density functions of µ0, µ1, . . . , µN as color plots (see the color
bar on the right for the scale). The above problem instance considers the 2-Wasserstein barycenter of
µ1, . . . , µN with equal weights λ1 = · · · = λN = 1

N . Note that for i = 1, . . . , N , the quadratic term
1
N ∥xi∥22 has been subtracted from the cost function ci since it does not affect the optimal solution
of (MT). Since µ1, . . . , µN ∈ F(µ0), (MT) has a unique optimizer which is the 2-Wasserstein
barycenter of µ1, . . . , µN , and this barycenter also belongs to F(µ0) [6, Corollary 4.5]. Moreover, an
approximate optimizer of (MT) can be computed to high precision with a fixed-point scheme; see [6,
Corollary 4.5]. Therefore, we denote the optimal value of (MT) computed by this fixed-point scheme
by αfp and treat it as the ground truth, and we treat the approximate optimizer of (MT) computed this
way as the true 2-Wasserstein barycenter of µ1, . . . , µN .
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FIGURE 4.6. Experiment 2 (location-scatter family) – The leftmost panel shows
the probability density function of the initial probability measure µ0 that defines a
location-scatter family F(µ0). The rest of the panels show the probability density
functions of the probability measures µ1, . . . , µN which all belong to the location-
scatter family generated by µ0.

FIGURE 4.7. Experiment 2 (location-scatter family) – Left: the lower bound αLB
MT

and the upper bounds α̂UB
MT, α̃UB

MT for the optimal value of (MT) computed by Algo-
rithm 2 as well as the true optimal value αfp computed via the fixed-point scheme
of Álvarez-Esteban et al. [6]. Center: the differences between the computed bounds
αLB
MT, α̂UB

MT, α̃UB
MT and the true optimal value αfp on the log-scale. Right: the com-

puted sub-optimality estimates ϵ̂sub, ϵ̃sub and their a priori upper bound ϵtheo on the
log-scale. The tuples on the bottom indicate the number of test functions (|G1| +
· · ·+ |GN |, |H|).

To approximate the 2-Wasserstein barycenter, we set ϵLSIP = 10−3 and test 6 different combina-
tions of test functions G1, . . . ,GN ,H. Similar to Experiment 1, the test functions in G1, . . . ,GN ,H
are defined based on increasingly finer triangular partitions of X1, . . . ,XN ,Z with |G1|+ · · ·+ |GN |
ranging between 120 and 10120 and |H| ranging between 92 and 7176. The values of α̂UB

MT, α̃UB
MT

are computed via Monte Carlo integration using 106 independent random samples, and each Monte
Carlo integration is repeated 100 times to examine the Monte Carlo error.

Figure 4.7 shows the computed upper and lower bounds for (MT), the sub-optimality estimates
ϵ̂sub, ϵ̃sub, and their a priori theoretical upper bound ϵtheo derived from Theorem 3.7(vi). Note that
we have added a constant term

∑N
i=1

∫
Xi

1
N ∥xi∥22 µi(dxi) to the objective of the matching for teams

problem. This is to add back the subtracted term 1
N ∥xi∥22 from the cost function ci for better inter-

pretability of the objective values. The left panel of Figure 4.7 shows the upper bounds α̂UB
MT, α̃UB

MT

and the lower bound αLB
MT computed by Algorithm 2. It also shows the value of αfp computed via

the fixed-point scheme for reference. The horizontal axis shows the number of test functions used,
i.e., each tuple corresponds to

(
|G1|+ · · ·+ |GN |, |H|

)
. The computed bounds look largely similar

to the left panel of Figure 4.2 where all bounds improve as the number of test function increases.
However, it can be seen that the two upper bounds α̃UB

MT and α̂UB
MT are comparable in this instance,

with α̃UB
MT being only slightly smaller than α̂UB

MT. Since the ground truth αfp is known for this prob-
lem, we show the differences between the computed bounds and αfp on the log-scale in the center
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FIGURE 4.8. Experiment 2 (location-scatter family) – Histograms of the approxi-
mate 2-Wasserstein barycenter ν̃ computed by Algorithm 2. The tuples on the bot-
tom indicate the number of test functions (|G1| + · · · + |GN |, |H|). The rightmost
panel shows the probability density function of the true 2-Wasserstein barycenter
computed via the fixed-point scheme of Álvarez-Esteban et al. [6].

panel of Figure 4.7, where the error bars show the Monte Carlo errors in the computation of the upper
bounds. When |G1| + · · · + |GN | = 10120 and |H| = 7176, the value of αfp − αLB

MT is 0.0018, and
the values of α̂UB

MT − αfp and α̃UB
MT − αfp are 0.0113 and 0.0097, respectively. This shows that the

lower bound αLB
MT is close to being optimal, and the computed sub-optimality estimates ϵ̂sub, ϵ̃sub are

dominated by the sub-optimality of the computed upper bounds. This also shows that the computed
approximate 2-Wasserstein barycenter ν̃ is not far from the true 2-Wasserstein barycenter. The right
panel of Figure 4.7 compares the computed sub-optimality estimates ϵ̂sub and ϵ̃sub with their a priori
theoretical upper bound ϵtheo on the log-scale, with error bars indicating the Monte Carlo error in
the upper bounds. Here, the value of ϵtheo is around 100 to 1000 times larger than ϵ̂sub and ϵ̃sub. This
demonstrates that the sub-optimality estimates ϵ̂sub, ϵ̃sub of the computed approximate 2-Wasserstein
barycenters are much less conservative than suggested by an a priori theoretical analysis, as discussed
in Remark 3.9.

Figure 4.8 shows the histograms of the approximate 2-Wasserstein barycenter ν̃ as well as the
true 2-Wasserstein barycenter computed via the fixed-point scheme. One can observe that ν̃ is a con-
tinuous probability measure that approximates the true 2-Wasserstein barycenter by a finite number
of “blobs”. This is due to the reassembly and binding steps that were carried out in Lines 7–11 of
Algorithm 2. The continuous probability measure ν̃ is formed via a sequence of “gluing” operations
that “glue together” the discrete probability measure ν̂ with the continuous probability measures
µ1, . . . , µN via the gluing lemma; see, e.g., [68, Lemma 7.6]. When |G1| + · · · + |GN | = 10120
and |H| = 7176, the histogram of ν̃ looks very similar to the probability density function of the
true 2-Wasserstein barycenter. This is in agreement with the computed sub-optimality estimate ϵ̃sub,
whose value is 0.0114. Overall, this problem instance serves as a sanity check and illustrates that
our algorithm has correctly computed the lower and upper bounds for the optimal value of (MT) as
our theoretical results have demonstrated. In Section 4.2.2, we will study a general problem instance
in which the fixed-point scheme of Álvarez-Esteban et al. [6] is not applicable and the ground truth
optimal value of (MT) is unavailable.

4.2.2. The general case. Next, we examine a general instance of the 2-Wasserstein barycenter prob-
lem, where µ1, . . . , µN do not belong to the same location-scatter family. The detailed settings of
this problem instance are shown below.

Assumption 4.4. We assume that the following statements hold.

• N = 20. For i = 1, . . . , 20, Xi is a parallelogram in R2, µi ∈ P(Xi) is absolutely continuous
with respect to the Lebesgue measure on Xi. It is the mixture of 2 or 3 bivariate Gaussian
measures truncated to Xi. Moreover, dXi(xi,x

′
i) := ∥xi − x′

i∥2.
• Z = conv(X1 ∪ · · · ∪ X20) and dZ(z, z′) := ∥z − z′∥2.
• For i = 1, . . . , 20, ci : Xi × Z → R is given by ci(xi, z) :=

1
20

(
∥z∥22 − 2⟨xi, z⟩

)
= 1

20∥xi −
z∥22 − 1

5∥xi∥22.
• The test functions G1, . . . ,GN ,H are chosen via Setting 2.19 such that Assumption 3.2(ii) and

Assumption 3.2(iii) are satisfied.



28 A. NEUFELD AND Q. XIANG

FIGURE 4.9. Experiment 2 (general case) – Probability density functions of µ1, . . . , µN .

Figure 4.9 shows the probability density functions of µ1, . . . , µN as color plots (see the color bar
on the right for the scale). Same as the previous problem instance, this problem also considers the
2-Wasserstein barycenter of µ1, . . . , µN with equal weights λ1 = · · · = λN = 1

N . In this case, the
fixed-point scheme of Álvarez-Esteban et al. [6] does not apply and there is no known method for
computing the true 2-Wasserstein barycenter of µ1, . . . , µN .

To approximate the 2-Wasserstein barycenter, we fix ϵLSIP = 2 × 10−4 and test 6 different com-
binations of test functions G1, . . . ,GN ,H. Same as before, the test functions in G1, . . . ,GN ,H are
defined based on increasingly finer triangular partitions of X1, . . . ,XN ,Z with |G1| + · · · + |GN |
ranging between 700 and 19200 and |H| ranging between 76 and 1869. The values of α̂UB

MT, α̃UB
MT

are computed via Monte Carlo integration using 106 independent random samples, and each Monte
Carlo integration is repeated 100 times to examine the Monte Carlo error.

Figure 4.10 shows the computed upper and lower bounds for (MT), the sub-optimality estimates
ϵ̂sub, ϵ̃sub, and their a priori theoretical upper bound ϵtheo derived from Theorem 3.7(vi). The left
panel of Figure 4.10 shows the upper bounds α̂UB

MT, α̃UB
MT and the lower bound αLB

MT computed by Al-
gorithm 2. The horizontal axis shows the number of test functions used, i.e., each tuple corresponds
to
(
|G1|+ · · ·+ |GN |, |H|

)
. Observe that the results look similar to Figure 4.7. The right panel of

Figure 4.10 compares the computed sub-optimality estimates ϵ̂sub and ϵ̃sub with their a priori theo-
retical upper bound ϵtheo on the log-scale, with error bars indicating the Monte Carlo error in the
upper bounds. Similar to Figure 4.7, the value of ϵtheo is around 100 to 1000 times larger than ϵ̂sub
and ϵ̃sub. Again, the sub-optimality estimates ϵ̂sub, ϵ̃sub of the computed approximate 2-Wasserstein
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FIGURE 4.10. Experiment 2 (general case) – Left: the lower bound αLB
MT and the

upper bounds α̂UB
MT, α̃UB

MT for the optimal value of (MT) computed by Algorithm 2.
Right: the computed sub-optimality estimates ϵ̂sub, ϵ̃sub and their a priori upper
bound ϵtheo on the log-scale. The tuples on the bottom indicate the number of test
functions (|G1|+ · · ·+ |GN |, |H|).

FIGURE 4.11. Experiment 2 (general case) – Histograms of the approximate 2-
Wasserstein barycenter ν̃ computed by Algorithm 2. The tuples on the bottom indi-
cate the number of test functions (|G1|+ · · ·+ |GN |, |H|).

barycenters are much less conservative than suggested by an a priori theoretical analysis, as discussed
in Remark 3.9.

Figure 4.11 shows the histograms of the approximate 2-Wasserstein barycenter ν̃. Similar to Fig-
ure 4.8, one can observe that ν̃ is a continuous probability measure that approximates the true 2-
Wasserstein barycenter by a finite number of “blobs”. Since the value of the computed sub-optimality
estimate ϵ̃sub is 0.0046, the approximate 2-Wasserstein barycenter ν̃ when |G1|+ · · ·+ |GN | = 19200
and |H| = 1869 is close to the true 2-Wasserstein barycenter.

4.3. Experiment 3: one-dimensional type spaces. In the third numerical experiment, we examine
the scalability of Algorithm 1 in terms of how its empirical running time changes with the number
N of agent categories in the matching for teams problem. To that end, let us study the following
matching for teams problem with one-dimensional type spaces, i.e., X1, . . . ,XN ⊂ R and a two-
dimensional quality space, i.e., Z ⊂ R2.

Example 4.5. The matching for teams problem is specified as follows.

• For i = 1, . . . , N , the type space of the i-th category of agents is Xi = [0, 1] ⊂ R. The type
space Xi represents a scalar-valued preference variable of agents in the i-th category that is
between 0 and 1. Moreover, dXi(xi, x

′
i) := |xi − x′i|.
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• The quality space Z is given by Z =
{
(z1, z2)

T ∈ R2 : z1 ≥ 0, z2 ≥ 0, z1 + z2 ≤ 1
}
⊂ R2.

Thus, each good is characterized by two non-negative quality variables whose sum is less than
or equal to 1. Moreover, dZ(z, z′) := ∥z − z′∥2.
• For i = 1, . . . , N , µi ∈ P(Xi) is absolutely continuous with respect to the Lebesgue measure

onXi, and its density is a continuous piece-wise affine and positive function onXi. µi represents
the distribution of the preference variable within the i-th agent category.
• For i = 1, . . . , N , the cost function ci : Xi×Z → R is given by ci(xi, z) := 1

N li
(
|xi−⟨si, z⟩|

)
,

where si ∈ R2, ∥si∥2 = 1, and

li(t) :=


0 if 0 ≤ t ≤ θi,1,
t− θi,1 if θi,1 < t ≤ θi,2,
θi,2 − θi,1 if t > θi,2.

Here, the vector si represents the weights these agents use when assessing the goods based on
the two quality variables in Z . An agent evaluates a good with quality z ∈ Z by comparing her
assessment ⟨si, z⟩ of the good and her preference variable xi ∈ Xi. The cost function ci(xi, z)
is equal to 0 if the absolute difference

∣∣xi−⟨si, z⟩∣∣ is below a threshold θi,1. Moreover, the cost
grows linearly when the absolute difference

∣∣xi − ⟨si, z⟩∣∣ is above the threshold θi,1 but below
a second threshold θi,2, and the cost remains constant when

∣∣xi − ⟨si, z⟩∣∣ exceeds the second
threshold θi,2. The factor 1

N in ci guarantees that the magnitude of the matching for teams
problem (e.g., the magnitude of the optimal value of (MT)) does not increase with the number
N of agent categories. In particular, this allows us to set an a priori theoretical sub-optimality
upper bound ϵtheo based on Theorem 3.7 that remains constant for all values of N .
• The test functions G1, . . . ,GN ,H are constructed via Setting 2.19 such that Assumption 3.2(ii)

and Assumption 3.2(iii) are satisfied. It holds that mi = 49 for all i, and it holds that k = 560.

In order to investigate the performance of our method, we generate 10 problem instances (or
scenarios) of Example 4.5, where for i = 1, . . . , N the probability density function of µi, the vector
si, and the two thresholds θi,1, θi,2 are independently randomly generated.

In this experiment, we fix ϵLSIP = 5× 10−5. The global minimization problem Oracle(·, ·, ·) in
Algorithm 1 is formulated into a mixed-integer programming problem10 and are subsequently solved
by the mixed-integer solver of Gurobi [42]. We would like to remark that the global minimization
problems Oracle

(
1,y

(r)
1 ,w

(r)
1

)
, . . . , Oracle

(
N,y

(r)
N ,w

(r)
N

)
in Line 5 of Algorithm 1 can be solved

in parallel. However, we choose to solve them sequentially in our implementation of Algorithm 1 in
order not to over-complicate the running time analysis.

We apply Algorithm 2 to the 10 randomly generated problem instances and record the com-
puted values of the sub-optimality estimate ϵ̂sub as well as the running time of Algorithm 1 for
N = 4, 6, 8, 10, 12, 14, 16, 18, 20, 50, 80, 100 agent categories. ϵ̂sub is computed via Monte Carlo
integration using 107 independent samples. We only examine the values of ϵ̂sub here because
ϵ̃sub ≤ ϵ̂sub and the computation of ϵ̃sub requires us to solve a global minimization problem (2.5),
which is more computationally costly than the computation of ϵ̂sub. In addition, we only examine the
running time of Line 3 in Algorithm 2, i.e., the running time of Algorithm 1. The running time of
the rest of Algorithm 2 consists mostly of time spent computing α̂UB

MT via Monte Carlo integration in
Line 13, which can be parallelized and is negligible compared to the running time of Line 3 when N
is large.

The left part of Table 4.1 shows the average and maximum values of the sub-optimality esti-
mate ϵ̂sub and the average and maximum running time of Algorithm 1 when N = 4, 6, 8, 10, 12,
14, 16, 18, 20, 50, 80, 100. From the results, it can be seen that the values of ϵ̂sub computed by
our algorithm are about two orders of magnitude smaller than the a priori theoretical upper bound
ϵtheo = 0.1293.

10Additional details about the mixed-integer programming formulation can be found in the online appendix on GitHub:
https://github.com/qikunxiang/MatchingForTeams.

https://github.com/qikunxiang/MatchingForTeams
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TABLE 4.1. Experiment 3 – Computed sub-optimality estimate, running time of
Algorithm 1, and support sparsity (note that ϵtheo = 0.1293).

Avg. ϵ̂sub Max. ϵ̂sub Avg. Max. Avg. Max. min1≤i≤N{mi}
N [×10−4] [×10−4] time [s] time [s] |supp(ν̂)| |supp(ν̂)| +k + 2
4 9.771 26.625 537 1123 87.1 104 611
6 10.636 23.440 1283 2438 104.8 137 611
8 7.319 11.492 1958 2781 99.9 132 611

10 8.419 16.667 2820 3542 113.0 161 611
12 8.557 20.180 3834 4377 114.8 168 611
14 8.291 17.612 4695 5513 118.3 176 611
16 7.461 15.005 5826 7629 116.1 170 611
18 6.999 12.227 6462 7398 109.3 164 611
20 6.869 12.815 6884 8009 120.6 203 611
50 5.464 6.968 17462 19717 140.1 175 611
80 4.927 6.355 33949 38496 151.1 187 611

100 4.822 6.412 42348 49769 156.8 205 611
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FIGURE 4.12. Experiment 3 – Running time of the LP solver (Line 3) and the global
minimization oracle (Line 5) in Algorithm 1.

Figure 4.12 shows the total running time of the LP solver in Line 3 of Algorithm 1, and the total
running time of Oracle(·, ·, ·) in Line 5 of Algorithm 1. It can be seen that the total running time of
Oracle(·, ·, ·) in Algorithm 1 is much longer relative to the LP solver for all values of N , showing
that almost all of the running time is spent on computing Oracle(·, ·, ·). An interesting observation
is that the total running time of Oracle(·, ·, ·) seems to grow approximately linearly in N . This is
in line with our discussion in Remark 2.7. Under the assumptions in Example 4.5, for i = 1, . . . , N
and for yi ∈ Rmi , wi ∈ Rk, the global minimization problem Oracle(·, ·, ·) is given by

minimize
xi,zi

li
(
xi − ⟨si, zi⟩

)
− ⟨gi(xi),yi⟩ − ⟨h(zi),wi⟩

subject to κi ≤ xi ≤ κi,
zi ∈ Z,

which corresponds to minimizing a continuous piece-wise affine function with 3 variables, since
Xi × Z ⊂ R3. Thus, the computational cost of this minimization indeed does not depend on N .
Since each iteration of Algorithm 1 solves N such minimization problems, the total running time of
Oracle(·, ·, ·) in each iteration of Algorithm 1 increases linearly in N . In addition, in Algorithm 1,
the number of iterations till convergence grows slowly relative to the growth of N , which makes the
total running time of Oracle(·, ·, ·) in Algorithm 1 grow approximately linearly inN . Moreover, this
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shows that in a computing environment with sufficient parallelization capabilities, a suitable parallel
implementation of the for-loop in Line 4 can drastically reduce the running time of Algorithm 1.

Remark 4.6. The LP problem (MT
∗(r)
par ) that is solved in Line 3 of Algorithm 1 has a structure which

allows it to be efficiently solved by parallel algorithms based on operator splitting methods; see, e.g.,
[32]. In this experiment, we use the standard LP solver provided by Gurobi [42] since it is reasonably
efficient. The investigation of the parallelization aspects of Algorithm 1 is left as future work.

Furthermore, recall that we have shown in Corollary 2.14 the existence of an approximate opti-
mizer ν̂ of (MT) with |supp(ν̂)| ≤ min1≤i≤N{mi} + k + 2. The right part of Table 4.1 shows the
average and maximum values of |supp(ν̂)|, where ν̂ is the discrete approximate optimizer of (MT)
computed by Algorithm 2. It shows that ν̂ computed by Algorithm 2 is even more sparse than what
Corollary 2.14 suggests, even though |supp(ν̂)| still increases with N . A possible explanation of this
phenomenon is as follows. As discussed by Carlier et al. [23, Section 2.2], one can restrict the quality
space Z to any subset Z ′ ⊆ Z satisfying Z ′ ⊇ z̃(X ) without affecting the optimal value of (MT).
This suggests that there could be many test functions inH that are redundant since they are identical
when their domains are restricted to a suitable choice of Z ′.

5. PROOF OF THEORETICAL RESULTS

All proof of the theoretical results can be found in the appendix of the arXiv version of the paper
at https://arxiv.org/abs/2308.03550.
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